【题目】已知椭圆C:
=1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.
(1)求椭圆C的方程;
(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围. ![]()
【答案】
(1)解:短轴长为2,可得b=1,
即有A(0,1),设F(c,0),B(x0,y0),
△AOF的面积是△BOF的面积的3倍,
即为
c1=3
c|y0|,
可得y0=﹣
,由直线AF:y=﹣
+1经过B,
可得x0=
c,即B(
c,﹣
),代入椭圆方程可得,
+
=1,即为a2=2c2,即有a2=2b2=2,
则椭圆方程为
+y2=1
(2)解:设P(x1,y1),Q(x2,y2),
由OPRQ为平行四边形,可得x1+x2=xR,y1+y2=yR,
R在椭圆C上,可得
+(y1+y2)2=1,
即为
+(k(x1+x2)+2m)2=1,
化为(1+2k2)((x1+x2)2+8km(x1+x2)+8m2=2,①
由
可得(1+2k2)x2+4kmx+2m2﹣2=0,
由△=16k2m2﹣4(1+2k2)(2m2﹣2)>0,即为1+2k2>m2,②
x1+x2=﹣
,代入①可得
﹣
+8m2=2,
化为1+2k2=4m2,代入②可得m≠0,
又4m2=1+2k2≥1,解得m≥
或m≤﹣
.
则m的取值范围是(﹣∞,﹣
]∪[
,+∞)
【解析】(1)由题意可得b=1,A(0,1),设F(c,0),B(x0 , yspan>0),运用三角形的面积公式可得y0=﹣
,再由直线AF的方程经过B,可得B的坐标,代入椭圆方程,解得a,b,进而得到椭圆方程;(2)设P(x1 , y1),Q(x2 , y2),由OPRQ为平行四边形,可得x1+x2=xR , y1+y2=yR , R在椭圆C上,代入椭圆方程,再由直线l与椭圆方程联立,运用韦达定理和判别式大于0,化简整理,解不等式即可得到所求m的范围.
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,底面
为正方形,
底面
,
为棱
的中点.
![]()
(1)证明:
;
(2)求直线
与平面
所成角的正弦值;
(3)若
为
中点,棱
上是否存在一点
,使得
,若存在,求出
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校有两个参加国际中学生交流活动的代表名额,为此该学校高中部推荐2男1女三名候选人,初中部也推荐了1男2女三名候选人。若从6名学生中人选2人做代表。
求:(1)选出的2名同学来自不同年相级部且性别同的概率;
(2)选出的2名同学都来自高中部或都来自初中部的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知从椭圆
的一个焦点看两短轴端点所成视角为
,且椭圆经过
.
(1)求椭圆的方程;
(2)是否存在实数
,使直线
与椭圆有两个不同交点
,且
(
为坐标原点),若存在,求出
的值.不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2. ![]()
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值为
,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的上下两个焦点分别为
,
,过点
与
轴垂直的直线交椭圆
于
、
两点,
的面积为
,椭圆
的离心力为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知
为坐标原点,直线
:
与
轴交于点
,与椭圆
交于
,
两个不同的点,若存在实数
,使得
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项
(a是常数),
(
).
(1)求
,
,
,并判断是否存在实数a使
成等差数列.若存在,求出
的通项公式;若不存在,说明理由;
(2)设
,
(
),
为数列
的前n项和,求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱
中,底面
是边长为2的正方形,
分别为线段
,
的中点.
![]()
(1)求证:
||平面
;
(2)四棱柱
的外接球的表面积为
,求异面直线
与
所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的自动通风设施.该设施的下部
是等腰梯形,其中
为2米,梯形的高为1米,
为3米,上部
是个半圆,固定点
为
的中点.
是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和
平行.当
位于
下方和上方时,通风窗的形状均为矩形
(阴影部分均不通风).
(1)设
与
之间的距离为
(
且
)米,试将通风窗的通风面积
(平方米)表示成关于
的函数
;
(2)当
与
之间的距离为多少米时,通风窗的通风面积
取得最大值?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com