在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且![]()
![]()
(I)求证:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值
(I)详见解析;(II)二面角E-BC1-D的余弦值为
解析试题分析:(I)由于EF与BD在同一个平面内,显然考虑在ABB1A1这个平面内证明这两条直线平行,这完全就是平面几何的问题了 取AB的中点M,
,所以F为AM的中点,又因为E为
的中点,所以
又
分别为
的中点,
,且
,所以四边形
为平行四边形,
,
,由此可得
平面
(II)取AB的中点M,则MB、MC、MD两两垂直,所以可以以M为原点建立空间直角坐标系,利用空间向量求二面角E-BC1-D的余弦值
试题解析:(I)证明:取AB的中点M,
,所以F为AM的中点,又因为E为
的中点,所以
在三棱柱
中,
分别为
的中点,
,且
,
所以四边形
为平行四边形,
,
,又
平面
,
平面
,
所以
平面
![]()
(II)以AB的中点M为原点建立空间直角坐标系如图所示,![]()
则
,
,
,
,
∴
,
,
设面BC1D的一个法向量为
,面BC1E的一个法向量为
,
则由
得
取
,
又由
得
取
,
则
,
故二面角E-BC1-D的余弦值为
12分
考点:1、空间直线与平面的位置关系;2、空间向量的应用;3、二面角
科目:高中数学 来源: 题型:解答题
如图,在三棱锥
中,平面
平面
,
,
.设
,
分别为
,
中点.![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)试问在线段
上是否存在点
,使得过三点
,
,
的平面内的任一条直线都与平面
平行?若存在,指出点
的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,五面体中,四边形ABCD是矩形,DA
面ABEF,且DA=1,AB//EF,
,P、Q、M分别为AE、BD、EF的中点.![]()
求证:(I)PQ//平面BCE;
(II)求证:AM
平面ADF;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图①,△BCD内接于直角梯形
,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三边将△A1BD、△A2BC、△A3CD翻折上去,恰好形成一个三棱锥ABCD,如图②.![]()
(1)求证:AB⊥CD;
(2)求直线BD和平面ACD所成的角的正切值;
(3)求四面体
的体积。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,PA
平面ABCD,且AD= 2PA,E、F、G、H分别是线段PA、PD、CD、BC的中点.![]()
(I)求证:BC∥平面EFG;
(II)求证:DH
平面AEG.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在直角梯形
中,
,
,
,
. 把
沿对角线
折起到
的位置,如图2所示,使得点
在平面
上的正投影
恰好落在线段
上,连接
,点
分别为线段
的中点. ![]()
(1)求证:平面
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)在棱
上是否存在一点
,使得
到点
四点的距离相等?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.![]()
(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com