如图,正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,![]()
(I)求证:
;
(II)设线段
的中点为
,在直线
上是否存在一点
,使得
?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角
的正切值。
![]()
解法一:(Ⅰ)因为平面
⊥平面
,![]()
平面
,平面![]()
平面![]()
,所以
⊥平面
所以
⊥
.因为
为等腰直角三角形,
,所以
又因为
,所以
,即
⊥![]()
,所以
⊥平面
。
(Ⅱ)存在点
,当
为线段AE的中点时,PM∥平面
取BE的中点N,连接AN,MN,则MN∥=
∥=PC,所以PMNC为平行四边形,所以PM∥CN, 因为CN在平面BCE内,PM不在平面BCE内, 所以PM∥平面BCE
(Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD,作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD,作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH,因此,∠AEF为二面角F-BD-A的平面角,因为FA=FE, ∠AEF=45°,所以∠AFE=90°,∠FAG=45°.设AB=1,则AE=1,AF=
.FG=AF·sinFAG=
在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+
=
,GH=BG·sinGBH=
·
=
在Rt△FGH中,tanFHG=
=
故二面角F-BD-A的正切值为
。
解法二: (Ⅰ)因为△ABE为等腰直角三角形,AB=AE,所以AE⊥AB.又因为平面ABEF⊥平面ABCD,AE
平面ABEF,平面ABEF∩平面ABCD=AB,所以AE⊥平面ABCD.所以AE⊥AD.因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,所以∠AFE= 90°.从而,
.所以
,
,
.
,
.所以EF⊥BE, EF⊥BC.因为BE
平面BCE,BC∩BE=B ,所以EF⊥平面BCE. (Ⅱ)存在点M,当M为AE中点时,PM∥平面BCE.
M (0,0,
),P ( 1,
,0 ).从而
=
,于是
·
=
·
=0, 所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内, 故PMM∥平面BCE.
(Ⅲ)设平面BDF的一个法向量为
,并设
=(x,y,z).
, ![]()
![]()
即 ![]()
取y=1,则x=1,z=3。从而
。取平面ABD的一个法向量为
。
。故二面角F—BD—A的余弦值为
故其正切值为
。
科目:高中数学 来源: 题型:
(本小题满分12分)如图,正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,
。
![]()
(Ⅰ)求证:
;
(Ⅱ)设线段
的中点为
,在直线
上是否存在一点
,使得
?若存在,请指出点
的位置,并证明你的结论;若不存在,请说明理由;
(Ⅲ)求二面角
的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
如图,正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,
。
![]()
(Ⅰ)求证:
;
(Ⅱ)设线段
、
的中点分别为
、
,求证:
∥![]()
(Ⅲ)求二面角
的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009四川卷文)(本小题满分12分)
如图,正方形
所在平面与平面四边形
所在平面互相垂直,△
是等腰直角三角形,![]()
(I)求证:
;
(II)设线段
、
的中点分别为
、
,求证:
∥![]()
(III)求二面角
的大小。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年辽宁省丹东市四校协作体高三第二次联合考试理科数学卷 题型:解答题
(本小题满分12分)
如图,正方形
所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
.
的点,
,圆
的直径为9.
![]()
(I)求证:平面
平面
;
(II)求二面角
的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源:2010年山西省高一上学期期中考试数学试卷 题型:解答题
如图,正方形
所在平面与圆
所在平面相交于
,线段
为圆
的弦,
垂直于圆
所在平面,垂足
是圆
上异于
的点,
,圆
的直径为
,
1)求证:平面
平面
2)求二面角
的平面角的正切值.(12分)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com