精英家教网 > 高中数学 > 题目详情

平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定   个平面.

分类,如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个平面.

答案:1或4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正△ABC的中线AF与中位线DE相交于点G,已知△A′DE是△AED绕边DE旋转过程中的一个图形.
(I)求证点A′在平面ABC上的射影在线段AF上;
(II)求当A′E⊥BD时△A′DE所转过的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有
(1)(2)(3)
(1)(2)(3)
.(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:其中正确的命题是(  )
(1)过一点有且仅有一个平面与已知直线垂直;
(2)两条相交直线在同一平面内的射影必为相交直线;
(3)底面是正多边形,各侧棱长都相等的棱锥是正棱锥;
(4)底面是正方形,有两个侧面是矩形的四棱柱是正四棱柱.

查看答案和解析>>

科目:高中数学 来源: 题型:

若α,β是两个相交平面,点A不在α内,也不在β内,则过点A且与α和β都平行的直线(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

直线a∥平面M,直线a⊥直线b,则直线b与平面M的位置关系是(  )

查看答案和解析>>

同步练习册答案