精英家教网 > 高中数学 > 题目详情
14.已知x,y∈[0,2],则事件“x+y≤1”发生的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{15}{16}$D.$\frac{7}{8}$

分析 在[0,2]上随机取两个实数x,y,列出x和y满足的关系式,在平面直角坐标系中做出对应的区域,利用面积之比求解即可.

解答 解:由题意x,y∈[0,2],在平面直角坐标系中做出对应的区域,
及事件“x+y≤1”对应的区域,如下图所示:
所以事件“x+y≤1”发生的概率为$\frac{\frac{1}{2}×1×1}{2×2}=\frac{1}{8}$;
故选:B.

点评 本题考查几何概型知识、二元一次不等式表示的平面区域等,属基本运算的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“若a>b,则ac>bc”的逆否命题是(  )
A.若a>b,则ac≤bcB.若ac≤bc,则a≤bC.若ac>bc,则a>bD.若a≤b,则ac≤bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-x2+2a+b(x∈R)的图象在x=0处的切线为y=bx.(e为自然对数的底数).
(Ⅰ)求a,b的值;
(Ⅱ)若k∈Z,且f(x)+$\frac{1}{2}$(3x2-5x-2k)≥0对任意x∈R恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足12Sn-36=3n2+8n,数列{log3bn}为等差数列,且b1=3,b3=27.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)令cn=(-1)n$({{a_n}-\frac{5}{12}})+{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是判断“实验数”的程序框图,在[30,80]内的所有整数中,“实验数”的个数是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某公司拥有多家连锁店,所有连锁店共有1800名员工,为调查他们的年龄分布情况,现随机抽取该公司其中一家连锁店,将该店所有员工的年龄记录如下:
24,31,25,41,28,39,25,27,47,
32,29,36,24,34,23,37,45,22.
(Ⅰ)试估计该公司所有连锁店的员工中年龄超过40岁的人数;
(Ⅱ)在被抽到的连锁店中,从年龄在区间[30,40)的员工中,随机选取2人,求这2人年龄相差5岁的概率;
(Ⅲ)现从被抽到的连锁店的所有员工中,选派3人参加活动,当这3人年龄的方差最大时,写出这3人的年龄.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知在平面直角坐标系xOy内的四点A(1,2),B(3,4),C(-2,2),D(-3,5),则向量$\overrightarrow{AB}$在向量$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)过点($\sqrt{2}$,1),且焦距为2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=k(x+1)(k>-2)与椭圆C相交于不同的两点A、B,线段AB的中点M到直线2x+y+t=0的距离为$\frac{3\sqrt{5}}{5}$,求t(t>2)的取值范围.

查看答案和解析>>

同步练习册答案