【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,
轴的正半轴与极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
且倾斜角为
的直线
与曲线
相交于
两点.
(1)写出曲线
的直角坐标方程和直线
的普通方程;
(2)若
,求
的值.
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若函数
是奇函数,求实数
的值;
(2)若对任意的实数
,函数
(
为实常数)的图象与函数
的图象总相切于一个定点.
① 求
与
的值;
② 对
上的任意实数
,都有
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】猜商品的价格游戏, 观众甲:
主持人:高了! 观众甲:
主持人:低了! 观众甲:
主持人:高了! 观众甲:
主持人:低了! 观众甲:
主持人:低了! 则此商品价格所在的区间是 ( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:
![]()
(Ⅰ)求频率分布表中
,
的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在
内的人数
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的定义域为
,对给定的正数
,若存在闭区间
,使得函数
满足:①
在
内是单调函数;②
在
上的值域为
,则称区间
为
的
级“理想区间”.下列结论错误的是( )
A. 函数
(
)存在1级“理想区间”
B. 函数
(
)不存在2级“理想区间”
C. 函数
(
)存在3级“理想区间”
D. 函数
,
不存在4级“理想区间”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系
的原点为极点,
轴的非负半轴为极轴建立极坐标系,且两坐标系有相同的长度单位.已知点
的极坐标为
,
是曲线
:
上任意一点,点
满足
,设点
的轨迹为曲线
.
(Ⅰ)求曲线
的直角坐标方程;
(Ⅱ)若过点
的直线
的参数方程
(
为参数),且直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线
的极坐标方程为
),圆
的参数方程为:
(其中
为参数).
(1)判断直线
与圆
的位置关系;
(2)若椭圆的参数方程为
(
为参数),过圆
的圆心且与直线
垂直的直线
与椭圆相交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂拟造一座平面为长方形,面积为
的三级污水处理池.由于地形限制,长、宽都不能超过
,处理池的高度一定.如果池的四周墙壁的造价为
元
,中间两道隔墙的造价为
元
,池底的造价为
元
,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com