【题目】“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”,讲的是西施浣纱的故事;“落雁”,指的就是昭君出塞的故事;“闭月”,是述说貂蝉拜月的故事;“羞花”,谈的是杨贵妃醉酒观花时的故事.她们分别是中国古代的四大美女.某艺术团要以四大美女为主题排演一部舞蹈剧,已知乙扮演杨贵妃,甲、丙、丁三人抽签决定扮演的对象,则甲不扮演貂蝉且丙扮演昭君的概率为______.
![]()
科目:高中数学 来源: 题型:
【题目】边长为
的等边三角形内任一点到三边距离之和为定值,这个定值等于
;将这个结论推广到空间是:棱长为
的正四面体内任一点到各面距离之和等于________________.(具体数值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放以来,我国经济持续高速增长
如图给出了我国2003年至2012年第二产业增加值与第一产业增加值的差值
以下简称为:产业差值
的折线图,记产业差值为
单位:万亿元
.
求出y关于年份代码t的线性回归方程;
利用
中的回归方程,分析2003年至2012年我国产业差值的变化情况,并预测我国产业差值在哪一年约为34万亿元;
结合折线图,试求出除去2007年产业差值后剩余的9年产业差值的平均值及方差
结果精确到
.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
样本方差公式:
.
参考数据:
,
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,
为抛物线
上异于原点的任意一点,过点
的直线
交抛物线
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为3时,
为正三角形.
(1)求抛物线
的方程;
(2)若直线
,且
和抛物线
有且只有一个公共点
,试问直线
是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在由数字1,2,3,4,5组成的所有没有重复数字的四位数中,大于3145且小于4231的数共有( )
A.27个B.28个C.29个D.30个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程及曲线
的直角坐标方程;
(2)设点
,直线
与曲线
相交于两点
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究机构对某校学生往返校时间的统计资料表明:该校学生居住地到学校的距离
(单位:千米)和学生花费在上学路上的时间
(单位:分钟)有如下的统计资料:
到学校的距离 | 1.8 | 2.6 | 3.1 | 4.3 | 5.5 | 6.1 |
花费的时间 | 17.8 | 19.6 | 27.5 | 31.3 | 36.0 | 43.2 |
如果统计资料表明
与
有线性相关关系,试求:
(1)判断
与
是否有很强的线性相关性?
(相关系数
的绝对值大于0.75时,认为两个变量有很强的线性相关性,精确到0.01)
(2)求线性回归方程
(精确到0.01);
(3)将
分钟的时间数据
称为美丽数据,现从这6个时间数据
中任取2个,求抽取的2个数据全部为美丽数据的概率.
参考数据:
,
,
,
,
,![]()
参考公式:
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com