精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x2-4x
x2-4x
,x≥0
,x<0
,若f(a-2)+f(a)>0,则实数a的取值范围是(  )
分析:求得函数的单调性与奇偶性,将不等式化为具体不等式,即可求实数a的取值范围.
解答:解:∵x>0时,-x<0,∴f(-x)=x2+4x=-f(x);x<0时,-x>0,∴f(-x)=-x2+4x=-f(x),
∴函数f(x)是奇函数
∵f(a-2)+f(a)>0,∴f(a-2)>f(-a),
∵函数f(x)=
-x2-4x
x2-4x
,x≥0
,x<0

∴h(x)=-x2-4x在[0,+∞)单调递减,h(x)max=h(0)=0
g(x)=x2-4x在(-∞,0)上单调递减,g(x)min=g(0)=0
由分段函数的性质可知,函数f(x)在R上单调递减
∵f(a-2)>f(-a),
∴a-2<-a,∴a<1
故选D.
点评:本题考查函数的性质,考查解不等式,确定函数的单调性与奇偶性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案