精英家教网 > 高中数学 > 题目详情
已知直线与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若,(),则λ=( )
A.
B.
C.3
D.
【答案】分析:先过A,B两点分别作准线的垂线,再过B作AC的垂线,垂足分别为C,D,E,在直角三角形ABE中,求得cos∠BAE,即可得到结论.
解答:解:直线恒过定点(2,0),即为抛物线y2=8x的焦点F,∠AFx=60°
过A,B两点分别作准线的垂线,垂足分别为C,D,再过B作AC的垂线,垂足为E,
设|BF|=m,
∵|FA|=λ|FB|,
∴|AF|=λm
∴|AC|=|AF|=λm,|BD|=|BF|=m
如图,在直角三角形ABE中,|AE|=|AC|-|BD|=(λ-1)m,|AB|=(λ+1)m,
∴cos60°==
=
∴λ=3
故选C.
点评:本题考查了抛物线的简单性质,考查学生的计算能力,解题的关键是利用抛物线的定义作出直角三角形ABE.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=

(A)            (B)           (C)          (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=

(A)            (B)           (C)          (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

(全国卷Ⅱ文)已知直线与抛物线C:相交AB两点,FC的焦点。若,则k= (  )

A.           B.         C.          D.

查看答案和解析>>

科目:高中数学 来源: 题型:

()已知直线与抛物线C:相交A、B两点,F为C的焦点.若,则k=

(A)            (B)          (C)         (D)

查看答案和解析>>

科目:高中数学 来源:2012届湖北省高二下学期期中考试理科数学卷 题型:选择题

已知直线与抛物线C:相交于A.B两点,F为C的焦点,若,则(     )

A.                  B.                C.                D.  

 

查看答案和解析>>

同步练习册答案