【题目】已知函数f(x)=alnx+
x2﹣ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
【答案】
(1)解:由题设知,函数f(x)的定义域为(0,+∞),
f′(x)=
且f′(x)=0有两个不同的正根,即x2﹣ax+a=0两个不同的正根x1,x2,(x1<x2)
则
,∴a>4,
(0,x1),f′(x)>0,(x1,x2),f′(x)<0,(x2,+∞),f′(x)>0,
∴x1,x2是f(x)的两个极值点,符合题意,
∴a>4;
(2)解:f(x1)+f(x2)=alnx1+
x12﹣ax1+alnx2+
x22﹣ax2=a(lna﹣
a﹣1),
∴
=lna﹣
a﹣1,
令y=lna﹣
a﹣1,则y′=
﹣
,
∵a>4,
∴y′<0,
∴y=lna﹣
a﹣1在(4,+∞)上单调递减,
∴y<ln4﹣3,
∵不等式f(x1)+f(x2)<λ(x1+x2)恒成立,x1+x2>0,
∴是λ的最小值ln4﹣3
【解析】(1)f′(x)=
且f′(x)=0有两个不同的正根,即x2﹣ax+a=0两个不同的正根,即可求实数a的取值范围;(2)利用韦达定理,可得
=lna﹣
a﹣1,构造函数,确定函数的单调性,求出其范围,即可求λ的最小值.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的极值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减;求函数
的极值的方法是:(1)如果在
附近的左侧
,右侧
,那么
是极大值(2)如果在
附近的左侧
,右侧
,那么
是极小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知数列{an}前n项和Sn满足:2Sn+an=1.
(1)求数列{an}的通项公式;
(2)设
,数列{bn}的前n项和为Tn , 求证:Tn<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:
产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择. ①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果数列
,
,
,
(
,且
),满足:①
,
;
②
,那么称数列
为“
”数列.
(
)已知数列
,
,
,
;数列
,
,
,
,
.试判断数列
,
是否为“
”数列.
(
)是否存在一个等差数列是“
”数列?请证明你的结论.
(
)如果数列
是“
”数列,求证:数列
中必定存在若干项之和为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,有
、
、
三座城市,
城在
城的正西方向,且两座城市之间的距离为
;
城在
城的正北方向,且两座城市之间的距离为
.由
城到
城只有一条公路
,甲有急事要从
城赶到
城,现甲先从
城沿公路
步行到点
(不包括
、
两点)处,然后从点
处开始沿山路
赶往
城.若甲在公路上步行速度为每小时
,在山路上步行速度为每小时
,设
(单位:弧度),甲从
城赶往
城所花的时间为
(单位:
).
![]()
(1)求函数
的表达式,并求函数的定义域;
(2)当点
在公路
上何处时,甲从
城到达
城所花的时间最少,并求所花的最少的时间的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式|x﹣3|+|x﹣m|≥2m的解集为R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此时a,b,c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
且
,设命题
:函数
在
上单调递减,命题
:对任意实数
,不等式
恒成立.
(1)写出命题
的否定,并求非
为真时,实数
的取值范围;
(2)如果命题“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.
![]()
(1)求
的值;
(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车
辆,混合动力型公交车
辆,计划以后电力型车每年的投入量比上一年增加
,混合动力型车每年比上一年多投入
辆.设
、
分别为第
年投入的电力型公交车、混合动力型公交车的数量,设
、
分别为
年里投入的电力型公交车、混合动力型公交车的总数量。
(1)求
、
,并求
年里投入的所有新公交车的总数
;
(2)该市计划用
年的时间完成全部更换,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com