精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x-
k
x
+
k
3
(k∈R).
(1)若集合{x|f(x)=x,x∈R}中有且只有一个元素,求k的值;
(2)若函数f(x)在区间(1,+∞)上是增函数,求k的取值范围.
分析:(1)由f(x)=x,变形为二次方程,根据△=0,求参数k的值;
(2)由增函数的定义知对任意的1<x1<x2,f(x1)-f(x2)<0,由此不等式得到k的关系式,求解即可得到k的取值范围.
解答:解:(1)由f(x)=x得x2+
k
3
x-k=0
,由△=0,解得k=-36或k=0(舍),∴k=-36
(2)设1<x1x2,则f(x1)-f(x2)=
(x1-x2)(2x1x2+k)
x1x2
<0∴2x1x2+k>0

∴k>-2x1x2
∵-2x1x2<-2,
∴k≥-2.
点评:本题考查函数单调性的性质,解题的关键是将题设中所给的条件进行正确转化如(1)中,转化一元二次方程有一根,(2)根据增函数的定义转化出关于参数的不等式.本题考查了转化化归的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案