【题目】已知双曲线
的一个焦点是
,且![]()
(1)求双曲线
的方程
(2)设经过焦点
的直线
的一个法向量为
,当直线
与双曲线
的右支相交于不同的两点
时,求实数
的取值范围
(3)设(2)中直线
与双曲线
的右支相交于
两点,问是否存在实数
,使得
为锐角?若存在,请求出
的范围;若不存在,请说明理由
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
平面
,
,
,
是棱
上的一点.
(1)证明:
平面
;
(2)若
平面
,求
的值;
(3)在(2)的条件下,三棱锥
的体积是18,求
点到平面
的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:
=1(a>b>0)的左右焦点分别为F1,F2,焦距为2,一条准线方程为x=2.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过点P,Q,F2三点的圆的方程;
(3)若
=
,且λ∈[
],求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区
年10年间梅雨季节的降雨量
单位:
的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
![]()
假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.
老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元
而乙品种杨梅的亩产量
亩
与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为
元
,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润
万元
的期望更大?并说明理由.
降雨量 |
|
|
|
|
亩产量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列
中,已知
,
为常数.
(1)证明:
成等差数列;
(2)设
,求数列
的前n项和
;
(3)当
时,数列
中是否存在不同的三项
成等比数列,
且
也成等比数列?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知半圆
:
,
、
分别为半圆
与
轴的左、右交点,直线
过点
且与
轴垂直,点
在直线
上,纵坐标为
,若在半圆
上存在点
使
,则
的取值范围是( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,底面是边长为4的正三角形,
,
底面
,点
分别为
,
的中点.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在点
,使得直线
与平面
所成的角的正弦值为
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com