如图,已知椭圆
(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由. ![]()
(1)
;(2)
.
解析试题分析:(1)设椭圆的方程,用待定系数法求出
的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式
:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:解:(1)直线AB方程为:bx-ay-ab=0.
依题意
解得
∴椭圆方程为
.[
(2)假若存在这样的k值,由
得![]()
.
∴
①
设
,
、
,
,则
②
而
.
要使以CD为直径的圆过点E(-1,0),当且仅当CE⊥DE时,则
,即
∴
③
将②式代入③整理解得
.经验证,
,使①成立.
综上可知,存在
,使得以CD为直径的圆过点E.
考点:(1)椭圆的标准方程;(2)直线与椭圆的综合问题.
科目:高中数学 来源: 题型:解答题
已知椭圆的顶点与双曲线
的焦点重合,它们的离心率之和为
,若椭圆的焦点在y轴上.
(1)求双曲线的离心率,并写出其渐近线方程;
(2)求椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆
的左,右焦点.
(1)若
是椭圆在第一象限上一点,且
,求
点坐标;
(2)设过定点
的直线
与椭圆交于不同两点
,且
为锐角(其中
为原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
,且
,点
在椭圆上,且
的周长为6.
(1)求椭圆
的方程;(2)若点
的坐标为
,不过原点
的直线
与椭圆
相交于
不同两点,设线段
的中点为
,且
三点共线.设点
到直线
的距离为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆C与两圆(x+
)2+y2=4,(x-
)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(
,
),F(
,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com