精英家教网 > 高中数学 > 题目详情
3.不等式组$\left\{{\begin{array}{l}{y≤x}\\{3y≥x}\\{x+y≥4}\end{array}}\right.$的解集记为D,命题p:?(x,y)∈D,x+2y≥5,命题q:?(x,y)∈D,2x-y<2,则下列命题为真命题的是(  )
A.?pB.qC.p∨(?q)D.(?p)∨q

分析 作出不等式组对应的平面区域,利用点与直线的关系转化为不等式关系,利用复合命题真假关系进行判断即可.

解答 解:作出不等式组对应的平面区域如图:
作出直线x+2y=5,则阴影部分都在直线x+2y=5的上方,即:?(x,y)∈D,x+2y≥5成立,
故命题p是真命题,
作出直线2x-y=2,则阴影部分除点A外都在直线2x-y=2的下方,即命题q:?(x,y)∈D,2x-y<2,不成立,
故命题q假命题,
故p∨(?q)为真命题,其余为假命题,
故选:C

点评 本题主要考查复合命题真假关系,利用二元一次不等式组表示平面区域,利用数形结合法进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-$\sqrt{3}$,-1),sin($\frac{π}{2}$-2α)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l的参数方程为$\left\{\begin{array}{l}x=4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程及弦AB的长;
(2)动点P在圆C上(不与A,B重合),试求△ABP的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+|x+1|.
(1)求函数f(x)的值域M;
(2)若a∈M,试比较|a-1|+|a+1|,$\frac{3}{2a}$,$\frac{7}{2}-2a$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)求函数f(x)=$\frac{{|{3x+2}|-|{1-2x}|}}{{|{x+3}|}}$的最大值M.
(Ⅱ)若实数a,b,c满足a2+b2≤c≤M,证明:2(a+b+c)+1≥0,并说明取等条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,A为椭圆E的右顶点,B,C分别为椭圆E的上、下顶点.线段CF2的延长线与线段AB交于点M,与椭圆E交于点P.
(1)若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,△PF1C的面积为12,求椭圆E的方程;
(2)设S${\;}_{△CM{F}_{2}}$=λ•S${\;}_{△CP{F}_{1}}$,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正项等比数列{an}中,a1+a4+a7=2,a3+a6+a9=18,则{an}的前9项和S9=(  )
A.14B.26C.30D.29

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=(2x-1)ex,a=f(1),b=f(-$\sqrt{2}$),c=f(-ln2),d=f(-$\frac{1}{2}$),则(  )
A.a>b>c>dB.b>a>c>dC.d>a>b>cD.a>d>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某三棱柱的三视图如图所示,该三棱柱的表面积为3+2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案