精英家教网 > 高中数学 > 题目详情
5.已知直线l∥直线m,m?平面α,则直线l与平面α的位置关系是(  )
A.相交B.平行C.在平面α内D.平行或在平面α内

分析 根据直线l?平面α和直线l?平面α两种情况讨论,能判断直线l与平面α的位置关系.

解答 解:∵直线l∥直线m,m?平面α,
∴当直线l?平面α时,成立;
当直线l?平面α时,由直线与平面平行的判定定理得l∥α.
∴直线l与平面α的位置关系是平行或在平面α内.
故选:D.

点评 本题考查直线与平面的位置关系的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1中,体对角线A1C与面对角线DB异面且垂直.
(1)请在该正方形中,另找一组具有这样关系的对角线:(可以是图形中还未画出来的,也可以是已经画出来的)(2)若正方体的棱长为2cm,求直三棱柱ABD-A1B1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=2sinx(x∈[0,π])的值域为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在Rt△ABC中,AC=BC,PA⊥平面ABC,PB与平面ABC成60°角
(1)求证:平面PBC⊥平面PAC;
(2)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow a=(m+1,0,2m),\overrightarrow b=(6,2n-1,2),若\overrightarrow a∥\overrightarrow b$,则m与n的值分别为(  )
A.$\frac{1}{5}$,$\frac{1}{2}$B.-$\frac{1}{5}$,-$\frac{1}{2}$C.5,2D.-5,-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从一条生产线上每隔30分钟取一件产品,共取了n件,测得其产品尺寸后,画出其频率分布直方图如图,已知尺寸在[15,45)内的频数为92.
(Ⅰ)求n的值;
(Ⅱ)求尺寸在[20,25]内产品的个数;
(Ⅲ)估计尺寸大于25的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sinxcosx+2$\sqrt{3}{cos^2}x-\sqrt{3}$的最小正周期是π,单调递减区间是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6相交.则?p及?p的真假为(  )
A.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为真
B.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为假
C.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为真
D.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既无最大值,也无最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),则下列结论成立的是①②④.(把你认为正确结论的序号都写上)
①若f(x1)≤f(x2)对任意实数x恒成立,则x2-x1必定是$\frac{π}{2}$的整数倍;
②y=f(x)的图象关于($\frac{4π}{3}$,0)对称;
③对于函数y=|f(x)|(x∈R)的图象,x=-$\frac{5π}{12}$一定是一条对称轴且相邻两条对称轴之间的距离是$\frac{π}{2}$;
④函数f(x)在每一个[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有严格的单调性.

查看答案和解析>>

同步练习册答案