精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log 3),c=f(21.6),则a,b,c的大小关系是(
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c

【答案】B
【解析】解:∵f(x)是定义在(﹣∞,+∞)上的偶函数,
∴b=f(log 3)=b=f(﹣log23)=f(log23),
∵log23=log49>log47,21.6>2,
∴log47<log49<21.6
∵在(﹣∞,0]上是增函数,
∴在[0,+∞)上为减函数,
则f(log47)>f(log49)>f(21.6),
即c<b<a,
故选:B
【考点精析】根据题目的已知条件,利用奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形都是边长为的正方形,点的中点, 平面.

(1)求证 平面

(2)求证:平面平面

(3)求平面与平面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点 P 与定点的距离和它到定直线 x 4 的距离的比是1: 2 ,记动点 P 的轨迹为曲线 E.

(1)求曲线 E 的方程;

(2)设 A 是曲线 E 上的一个点,直线 AF 交曲线 E 于另一点 B,以 AB 为边作一个平行四边形,顶点 A、B、C、D 都在轨迹 E 上,判断平行四边形 ABCD 能否为菱形,并说明理由;

(3)当平行四边形 ABCD 的面积取到最大值时,判断它的形状,并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求实数a的范围,使y=f(x)在区间[﹣5,5]上是单调函数.
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)证明:对于 在区间上有极小值,且极小值大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为)购买这四种新产品的情况,记录如下(单位:件):

A

1

1

1

1

1

B

1

1

1

1

1

1

1

1

C

1

1

1

1

1

1

1

D

1

1

1

1

1

1

(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);

(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X

求随机变量X的分布列和数学期望;

(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (m∈Z)为偶函数,且在(0,+∞)上为增函数.
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,点

)求 的方程;

)直线不过原点O且不平行于坐标轴,有两个交点,线段的中点为,证明:的斜率与直线的斜率的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, ,顶点在底面 上的射影恰为点 ,且.

1)求棱 所成的角的大小;

2)在棱 上确定一点,使,并求出二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案