精英家教网 > 高中数学 > 题目详情
设有关于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,记方程有两不等实根为事件A,方程没有实数根记为事件B,求事件A+B的概率
(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
(Ⅰ)由题意可知,总的基本事件有:
(0,0)、(0,1)、(0,2)、(1,0)、(1,1)、(1,2)、
(2,0)、(2,1)、(2,2)、(3,0)、(3,1)、(3,2)共有12个…(1分)
事件A发生,要求△=4a2-4b2>0,即a2>b2
符合的基本事件有(1,0)、(2,0)、
(2,1)、(3,0)、(3,1)、(3,2),共6个…(2分)
故P(A)=
6
12
=
1
2
…(3分)
事件B发生要求△=4a2-4b2<0,即a2<b2,符合的基本事件有:(0,1)、(0,2)、
(1,2)共3个…(4分)
故P(B)=
3
12
=
1
4
…(5分)
又事件A、B互斥,
∴P(A+B)=P(A)+P(B)=
3
4
…(6分)
(Ⅱ)试验的全部约束所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.
构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.
所以所求的概率为=
3×2- 
1
2
×22
3×2
=
2
3
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2-2ax+b2=0.
(1)若a是从0、1、2、3四个数中任取的一个数,b是从0、1、2三个数中任取的一个数,求上述方程没有实根的概率.
(2)若a是从区间[0,3]内任取的一个数,b=2,求上述方程没有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率.
(2)若a是从区间[0,t+1]任取的一个数,b是从区间[0,t]任取的一个数,其中t满足2≤t≤3,求方程有实根的概率,并求出其概率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0.
(1)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0.若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•河北区一模)设有关于x的一元二次方程x2+ax+b2=0
(Ⅰ)若a是从1,2,3,4,5五个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(Ⅱ)若a是从区间[1,5]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案