精英家教网 > 高中数学 > 题目详情

【题目】已知F1 , F2为椭圆C: =1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.
(1)证明:b2=ad;
(2)若M的坐标为( ,1),求椭圆C的方程.

【答案】
(1)证明:把x=c代入椭圆方程: =1,得

则d=|y|=

∴d×a=b2,即b2=ad


(2)解:∵M的坐标为( ,1),∴c=

,解得b2=2,a2=4.

故椭圆的方程为


【解析】(1)x=c代入椭圆方程求得y,进而求得d,可知d×a=b2 , 原式得证;(2)由M坐标可得c,再把M再把代入椭圆方程求得a和b的关系,结合隐含条件得到a和b的方程组,求得a,b,则椭圆的方程可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1)五边形中,

,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.

(1)求证:平面平面

(2)若四棱柱的体积为,求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图象在点e为自然对数的底数)处的切线斜率为3.

(1)求实数的值;

(2)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知中心在原点,离心率为的椭圆的一个焦点为圆 的圆心.

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上一点,过作两条斜率之积为的直线 ,当直线 都与圆相切时,求的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +3lnax﹣x,g(x)=xex+cosx(a≠0).
(1)求函数y=f(x)的单调区间;
(2)若x1∈[1,2],x2∈[0,3],使得f( )>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C和y轴相切,圆心在直线x﹣3y=0上,且被直线y=x截得的弦长为 ,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年袁隆平的超级杂交水稻再创亩产量世界纪录,为了测试水稻生长情况,专家选取了甲、乙两块地,从这两块地中随机各抽取株水稻样本,测量他们的高度,获得的高度数据的茎叶图如图所示:

(1)根据茎叶图判断哪块田的平均高度较高;

(2)计算甲乙两块地株高方差;

(3)现从乙地高度不低于的样本中随机抽取两株,求高度为的样本被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h(单位:米)与时间t(单位:秒)存在函数关系,并得到相关数据如下表:

时间t

2

4

高度h

10

25

17

( I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h与时间t的变化关系:y1=kt+b,y2=at2+bt+c,y3=abt , 确定此函数解析式,并简单说明理由;
( II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p,录用到能力中等的人的概率为q,则(p,q)=(
A.(
B.(
C.(
D.(

查看答案和解析>>

同步练习册答案