在平面直角坐标系
中,已知
,
,
,
,其中
.设直线
与
的交点为
,求动点
的轨迹的参数方程(以
为参数)及普通方程.
科目:高中数学 来源: 题型:解答题
已知曲线
的参数方程为![]()
是参数
,
是曲线
与
轴正半轴的交点.以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,求经过点
与曲线
只有一个公共点的直线
的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,每条曲线上取两个点,将其坐标记录于表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系与直角坐标系xOy有相同的长度单位,以原点D为极点,以x轴正半轴为极轴,曲线Cl的极坐标方程为
,曲线C2的参数方程为
为参数)。
(1)当
时,求曲线Cl与C2公共点的直角坐标;
(2)若
,当
变化时,设曲线C1与C2的公共点为A,B,试求AB中点M轨迹的极坐标方程,并指出它表示什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
,
是长轴的左、右端点,动点
满足
,联结
,交椭圆于点
. ![]()
(1)当
,
时,设
,求
的值;
(2)若
为常数,探究
满足的条件?并说明理由;
(3)直接写出
为常数的一个不同于(2)结论类型的几何条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的焦距为4,且过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
。取点
,连接
,过点
作
的垂线交
轴于点
。点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆C一定有唯一的公共点?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com