【题目】某市为广泛开展垃圾分类的宣传教育和倡导工作,使市民树立垃圾分类的环保意识,学会垃圾分类的知识,特举办了“垃圾分类知识竞赛".据统计,在为期1个月的活动中,共有两万人次参与网络答题.市文明实践中心随机抽取100名参与该活动的市民,以他们单次答题得分作为样本进行分析,由此得到如图所示的频率分布直方图:
![]()
(1)求图中a的值及参与该活动的市民单次挑战得分的平均成绩
(同一组中数据用该组区间中点值作代表);
(2)若垃圾分类答题挑战赛得分落在区间
之外,则可获得一等奖奖励,其中
,s分别为样本平均数和样本标准差,计算可得
,若某人的答题得分为96分,试判断此人是否获得一等奖;
(3)为扩大本次“垃圾分类知识竞赛”活动的影响力,市文明实践中心再次组织市民组队参场有奖知识竞赛,竞赛共分五轮进行,已知“光速队”与“超能队”五轮的成绩如下表:
成绩 | 第一轮 | 第二轮 | 第三轮 | 第四轮 | 第五轮 |
“光速队” | 93 | 98 | 94 | 95 | 90 |
“超能队” | 93 | 96 | 97 | 94 | 90 |
①分别求“光速队”与“超能队”五轮成绩的平均数和方差;
②以上述数据为依据,你认为"光速队”与“超能队”的现场有奖知识竞赛成绩谁更稳定?
【答案】(1)
,
(分);(2)此人未获得一等奖;(3)①“光速队”平均数为
,方差
,“超能队”平均数为
,方差为
;②“超能队”的现场有奖知识竞赛成绩更稳定.
【解析】
(1)由各组的频率和为1求出a的值;平均成绩等于各组的中间值与其频率积的和;
(2)将(1)求出的平均值和
代入
,从而可判断96是否在此区间;
(3)①由表中的数据直接求平均数和方差即可;②比较两个方差的大小,方差小的成绩更稳定.
(1)由频率分布直方图可知
,解得
;
参与该活动的市民单次挑战得分的平均值的平均成绩为
(分).
(2)由(1)知
,区间
,而
,
故此人未获得一等奖;
(3)①“光速队”五轮成绩的平均数为
,
方差为
.
“超能队”五轮成绩的平均数为
,
方差为
.
②评价:从方差数据来看,“超能队”的现场有奖知识竞赛成绩更稳定.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,左焦点
、右焦点
都在
轴上,点
是椭圆
上的动点,
的面积的最大值为
,在
轴上方使
成立的点
只有一个.
(1)求椭圆
的方程;
(2)过点
的两直线
,
分别与椭圆
交于点
,
和点
,
,且
,比较
与
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线
的焦点为F,准线为
,
交x轴于点A,并截圆
所得弦长为
,M为平面内动点,△MAF周长为6.
(1)求抛物线
方程以及点M的轨迹
的方程;
(2)“过轨迹
的一个焦点
作与
轴不垂直的任意直线
”交轨迹
于
两点,线段
的垂直平分线交
轴于点
,则
为定值,且定值是
”.命题中涉及了这么几个要素:给定的圆锥曲线
,过该圆锥曲线焦点
的弦
,
的垂直平分线与焦点所在的对称轴的焦点
,
的长度与
、
两点间距离的比值.试类比上述命题,写出一个关于抛物线
的类似的正确命题,并加以证明.
(3)试推广(2)中的命题,写出关于抛物线的一般性命题(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
![]()
(1)根据频数分布表计算苹果的重量在
的频率;
(2)用分层抽样的方法从重量在
和
的苹果中共抽取4个,其中重量在
的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,写出所有可能的结果,并求重量在
和
中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
,其中常数
.
(1)当
时,求函数
的极值;
(2)若函数
有两个零点
,求实数
的范围;
(3)设
,在区间
内是否存在区间
,使函数
在区间
的值域也是
?请给出结论,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com