【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.
![]()
(1)求这100份数学试卷成绩的中位数;
(2)从总分在
和
的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数).在以原点
为极点,
轴正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求直线
的极坐标方程和曲线
的直角坐标方程;
(2)若直线
与曲线
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的定义域为
,部分对应值如下表,
的导函数
的图象如图所示,给出关于
的下列命题:
①函数
在
处取得极小值;
②函数
在
是减函数,在
是增函数;
③当
时,函数
有4个零点;
④如果当
时,
的最大值是2,那么
的最小值为0.
其中所有的正确命题是__________(写出正确命题的序号).
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点. ![]()
(1)求证:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:
![]()
其中,点
为
轴上关于原点对称的两点,曲线段
是桥的主体,
为桥顶,且曲线段
在图纸上的图形对应函数的解析式为
,曲线段
均为开口向上的抛物线段,且
分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处(
)的切线的斜率相等.
(1)求曲线段
在图纸上对应函数的解析式,并写出定义域;
(2)车辆从
经
倒
爬坡,定义车辆上桥过程中某点
所需要的爬坡能力为:
(该点
与桥顶间的水平距离)
(设计图纸上该点处的切线的斜率),其中
的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力.它们的爬坡能力分别为
米,
米,
米,又已知图纸上一个单位长度表示实际长度
米,试问三种类型的观光车是否都可以顺利过桥?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈(﹣
,
)
(1)当a=
,θ=
时,求f(x)在区间[0,π]上的最大值与最小值;
(2)若f(
)=0,f(π)=1,求a,θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品,
(1)求恰好有一件次品的概率.
(2)求都是正品的概率.
(3)求抽到次品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com