精英家教网 > 高中数学 > 题目详情
17.圆x2+y2-4x=0在点P(4,1)处的切线方程为3x+4y-16=0或x=4.

分析 由题意可得:圆的圆心与半径分别为:(2,0);2,再结合题意设直线,进而由点到直线的距离等于半径即可得到答案.

解答 解:由圆的一般方程可得圆的圆心与半径分别为:(2,0);2.
由图象可得切线的斜率存在,设切线的斜率为k,则切线方程为:kx-y-4k+1=0,
由点到直线的距离公式可得:$\frac{|2k-4k+1|}{\sqrt{1+{k}^{2}}}=2$,
解得:k=-$\frac{3}{4}$,
所以切线方程为:3x+4y-16=0,
当切线的斜率不存在时,切线为:x=4,满足题意.
故答案为:3x+4y-16=0或x=4.

点评 本题主要考查由圆的一般方程求圆的圆心与半径,以及点到直线的距离公式,此题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下面几种推理中是演绎推理的为(  )
A.科学家利用鱼的沉浮原理制造潜艇
B.猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N+
C.半径为r的圆的面积S=πr2,则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\frac{\sqrt{3}cosθ}{6}$x3+$\frac{sinθ}{4}$x2+$\frac{1}{tanθ}$,其中θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则导数f′(1)的取值范围是(  )
A.(-$\frac{1}{2}$,1]B.(-$\frac{1}{2}$,1)C.(-$\frac{1}{2}$,$\frac{1}{2}$)D.(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin300°+tan600°的值是  (  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$+$\sqrt{3}$D.$\frac{1}{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函数f(x)的最小正周期和其图象对称中心的坐标;
(2)求函数f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果复数$\overline{z}=\frac{2}{-1+i}$,则(  )
A.|z|=2B.z的实部为1
C.z的虚部为-1D.z的共轭复数为-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知曲线y=(1-x)xn(n∈N*)在$x=\frac{1}{2}$处的切线为l,直线l在y轴上上的截距为bn,则数列{bn}的通项公式为bn=(2-n)($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中(图),$A=\frac{π}{3},cosC=\frac{{2\sqrt{7}}}{7},BC=\sqrt{7}$,线段AC上点D满足AD=2DC.
(Ⅰ)求sin∠ABC及边AC的长;
(Ⅱ)求sin∠CBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2lnx-x2
(1)求f(x)的单调区间.
(2)求f(x)在区间$[\frac{1}{e},e]$的最值.

查看答案和解析>>

同步练习册答案