如图,已知点
是离心率为
的椭圆
:![]()
上的一点,斜率为
的直线
交椭圆
于
,
两点,且
、
、
三点互不重合.![]()
(1)求椭圆
的方程;(2)求证:直线
,
的斜率之和为定值.
(1)
;(2)详见解析
解析试题分析:(1)根据题意及
列方程组可得
的值。即可得此椭圆方程。(2)设出
的坐标及直线
的方程与椭圆方程联立消掉
可得关于
的方程,根据题意可知判别式应大于0,根据韦达定理可得此方程的两根之和与两根之积。即点
横坐标间的关系,代入直线方程,可得点
纵坐标之间的关系。然后根据斜率公式可得斜率之和,将其化简问题即可得证。
试题解析:由题意,可得
,代入![]()
得
,又
, 2分
解得
,
,
,
所以椭圆
的方程
. 5分
(2)证明:设直线
的方程为
,又
三点不重合,∴
,设
,
,
由
得![]()
所以
![]()
![]()
①
② 8分
设直线
,
的斜率分别为
,
,
则![]()
![]()
![]()
![]()
(*) 10分
将①、②式代入(*),
整理得![]()
,
所以![]()
![]()
,即直线
的斜率之和为定值
. 12分
考点:1椭圆的标准方程;2直线和圆锥曲线的位置关系问题;3定值问题。
科目:高中数学 来源: 题型:解答题
如图已知抛物线
:
过点
,直线
交
于
,
两点,过点
且平行于
轴的直线分别与直线
和
轴相交于点
,
.
(1)求
的值;
(2)是否存在定点
,当直线
过点
时,△
与△
的面积相等?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的短半轴长为
,动点![]()
在直线
(
为半焦距)上.
(1)求椭圆的标准方程;
(2)求以
为直径且被直线
截得的弦长为
的圆的方程;
(3)设
是椭圆的右焦点,过点
作
的垂线与以
为直径的圆交于点
,
求证:线段
的长为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
经过点
,离心率为
.
(1)求椭圆
的方程;
(2)直线
与椭圆
交于
两点,点
是椭圆
的右顶点.直线
与直线
分别与
轴交于点
,试问以线段
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.![]()
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
(ⅰ)当点
为“准圆”与
轴正半轴的交点时,求直线
的方程,
并证明
;
(ⅱ)求证:线段
的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图;已知椭圆C:
的离心率为
,以椭圆的左顶点T为圆心作圆T:
设圆T与椭圆C交于点M、N.![]()
(1)求椭圆C的方程;
(2)求
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与
轴交于点R,S,O为坐标原点。求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点.
(1)求双曲线的标准方程;
(2)求以双曲线的右准线为准线的抛物线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知梯形ABCD中|AB|=2|CD|,点E满足
=λ
,双曲线过C、D、E三点,且以A、B为焦点.当
≤λ≤
时,求双曲线离心率e的取值范围.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com