如图;已知椭圆C:
的离心率为
,以椭圆的左顶点T为圆心作圆T:
设圆T与椭圆C交于点M、N.![]()
(1)求椭圆C的方程;
(2)求
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与
轴交于点R,S,O为坐标原点。求证:
为定值.
(1)
(2)
取得最小值为-
,圆T的方程为:
;
(3)![]()
解析试题分析:(1)椭圆C:
的离心率为![]()
![]()
![]()
由椭圆的左顶点为
,所以![]()
可得椭圆的标准方程
;
(2)点M与点N关于
轴对称,设
,
,再根据
的取值范围求出
的最小值,并由取得最小值的条件确定
,进而确定圆
的半径.
(3)设点
,利用点
分别是直线
与
轴的交点,把
用
表示,
而
,结合点
都在椭圆上,将表达式化简即可.
试题解析:
解:(1)由题意知
解之得;
,由
得b=1,
故椭圆C方程为
;3分
(2)点M与点N关于
轴对称,
设
不妨 设
.
由于点M在椭圆C上,![]()
,
由已知
,
,
阶段
;
由于
故当
时,
取得最小值为-
,
当
时
,故
又点M在圆T上,代入圆的方程得
,故圆T的方程为:
;...8分
(3)设
,则直线MP的方程为![]()
令
,得
,同理
, 故
,10分
又点M与点P在椭圆上,故
,
得
,
为定值..14分
考点:1、椭圆的标准方程;2、圆的标准方程序;3、向量的数量积;4直线的方程.
科目:高中数学 来源: 题型:解答题
巳知椭圆
的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线
,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,其长轴长与短轴长的和等于6.![]()
(1)求椭圆
的方程;
(2)如图,设椭圆
的上、下顶点分别为
,
是椭圆上异于
的任意一点,直线
分别交
轴于点
,若直线
与过点
的圆
相切,切点为
.证明:线段
的长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知点
是离心率为
的椭圆
:![]()
上的一点,斜率为
的直线
交椭圆
于
,
两点,且
、
、
三点互不重合.![]()
(1)求椭圆
的方程;(2)求证:直线
,
的斜率之和为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1:
,C2:
. 设点P的轨迹为
.
(1)求C的方程;
(2)设直线
与C交于A,B两点.问k为何值时![]()
![]()
?此时
的值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,椭圆C:
=1(a>b>0)的右焦点为F(4m,0)(m>0,m为常数),离心率等于0.8,过焦点F、倾斜角为θ的直线l交椭圆C于M、N两点.![]()
(1)求椭圆C的标准方程;
(2)若θ=90°,
,求实数m;
(3)试问
的值是否与θ的大小无关,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线E:ax2+by2=1(a>0,b>0),经过点M
的直线l与曲线E交于点A、B,且
=-2
.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.![]()
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com