¢Ù
a
Óë
b
²»¹²Ïߣ¬Ôò¦Ë
a
Óë
b
Ò²²»¹²Ïߣ»¢Úº¯Êýy=tanxÔÚµÚÒ»ÏóÏÞÄÚÊÇÔöº¯Êý£»¢Ûº¯Êýf£¨x£©=sin|x|£¬g£¨x£©=|sinx|¾ùÊÇÖÜÆÚº¯Êý£»¢Üº¯Êýf(x)=4sin(2x+
¦Ð
3
)
ÔÚ[-
¦Ð
3
£¬0]
ÉÏÊÇÔöº¯Êý£»¢Ýº¯Êýf(x)=asin(2x+
¦Ð
3
)+2
µÄ×î´óֵΪ|a|+2£»¢ÞƽÐÐÓÚͬһ¸öÏòÁ¿µÄÁ½¸öÏòÁ¿Êǹ²ÏßÏòÁ¿£»¢ßÈôÆæº¯Êýf£¨x£©=xcosx+cµÄ¶¨ÒåÓòΪ[a£¬b]£¬Ôòa+b+c=0£®ÆäÖÐÕýÈ·µÄÃüÌâÊÇ______£®
¶ÔÓÚ¢Ù£¬ÓÉÏòÁ¿¹²ÏߵijäÒªÌõ¼þÖª¢Ù´í
¶ÔÓÚ¢ÚÀýÈç60¡ã£¼360+60¡ãµ«tan60¡ã=tan£¨360¡ã+60¡ã£©£¬¹Ê¢Ú´í
¶ÔÓÚ¢Ûf£¨x£©=sin|x|ÊÇżº¯ÊýËùÒÔ²»ÊÇÖÜÆÚº¯Êý£¬g£¨x£©=|sinx|ÊÇÖÜÆÚº¯Êý£¬¹Ê¢Û´í
¶ÔÓڢܡߵ±x¡Ê[-
¦Ð
3
£¬0]ʱ£¬ÓÐ2x+
¦Ð
3
¡Ê[-
¦Ð
3
£¬
¦Ð
3
]
£¬ËùÒÔf£¨x£©ÊÇÔöº¯Êý£¬¹Ê¢Ü¶Ô
¶ÔÓڢݣ¬ÓÐÈý½Çº¯ÊýµÄÓнçÐÔÖª¢Ý¶Ô
¶ÔÓÚ¢Þ£¬ÀýÈçÁ½¸öÏòÁ¿Í¬Ê±Æ½ÐÐÓÚÁãÏòÁ¿£¬ÔòÕâÁ½¸öÏòÁ¿²»Ò»¶¨Æ½ÐУ¬¹Ê¢Þ´í
¶ÔÓڢߣ¬Èôº¯ÊýÎªÆæº¯Êý£¬±ØÓÐc=0£¬a£¬b¹ØÓÚÔ­µã¶Ô³Æ£¬ËùÒÔa+b+c=0£¬¹Ê¢ß¶Ô
¹Ê´ð°¸Îª£º¢Ü¢Ý¢ß
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¢Ù
a
Óë
b
²»¹²Ïߣ¬Ôò¦Ë
a
Óë
b
Ò²²»¹²Ïߣ»¢Úº¯Êýy=tanxÔÚµÚÒ»ÏóÏÞÄÚÊÇÔöº¯Êý£»¢Ûº¯Êýf£¨x£©=sin|x|£¬g£¨x£©=|sinx|¾ùÊÇÖÜÆÚº¯Êý£»¢Üº¯Êýf(x)=4sin(2x+
¦Ð
3
)
ÔÚ[-
¦Ð
3
£¬0]
ÉÏÊÇÔöº¯Êý£»¢Ýº¯Êýf(x)=asin(2x+
¦Ð
3
)+2
µÄ×î´óֵΪ|a|+2£»¢ÞƽÐÐÓÚͬһ¸öÏòÁ¿µÄÁ½¸öÏòÁ¿Êǹ²ÏßÏòÁ¿£»¢ßÈôÆæº¯Êýf£¨x£©=xcosx+cµÄ¶¨ÒåÓòΪ[a£¬b]£¬Ôòa+b+c=0£®ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
a
£¬
b
£¬
c
ÊÇ·ÇÁãÆ½ÃæÏòÁ¿£¬ÇÒ
a
Óë
b
²»¹²Ïߣ¬Ôò·½³Ì
a
x2+
b
x+
c
=
0
µÄ½âµÄÇé¿öÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª|
a
|=|
b
|¡Ù0
£¬ÇÒ
a
Óë
b
²»¹²Ïߣ¬Ôò
a
+
b
Óë
a
-
b
µÄ¹ØÏµÎª£¨¡¡¡¡£©
A¡¢ÏàµÈB¡¢Ïཻµ«²»´¹Ö±
C¡¢Æ½ÐÐD¡¢´¹Ö±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁи÷ʽ£º
¢Ù|
a
|=
a
a
£»
¢Ú£¨
a
b
£©•
c
=
a
•£¨
b
c
£©£»
¢Û
OA
-
OB
=
BA
£»
¢ÜÔÚÈÎÒâËıßÐÎABCDÖУ¬MΪADµÄÖе㣬NΪBCµÄÖе㣬Ôò
AB
+
DC
=2
MN
£»
¢Ý
a
=£¨cos¦Á£¬sin¦Á£©£¬
b
=£¨cos¦Â£¬sin¦Â£©£¬ÇÒ
a
Óë
b
²»¹²Ïߣ¬Ôò£¨
a
+
b
£©¡Í£¨
a
-
b
£©£®
ÆäÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐËĸöÃüÌ⣺
£¨1£©Á½¸öµ¥Î»ÏòÁ¿Ò»¶¨ÏàµÈ      
£¨2£©Èô
a
Óë
b
²»¹²Ïߣ¬Ôò
a
Óë
b
¶¼ÊÇ·ÇÁãÏòÁ¿
£¨3£©ÁãÏòÁ¿Ã»Óз½Ïò            
£¨4£©Á½¸öÏàµÈµÄÏòÁ¿Æðµã¡¢ÖÕµãÒ»¶¨¶¼Ïàͬ
ÕýÈ·µÄÓУº
 
£¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸