【题目】将4名大学生随机安排到A,B,C,D四个公司实习.
(1)求4名大学生恰好在四个不同公司的概率;
(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).
【答案】(1)
;(2)分布列见解析,
。
【解析】
(1)将4人安排四个公司中,共有44=256种不同放法,记“4个人恰好在四个不同的公司”为事件A,则事件A包含
=24个基本事件,由此能求出4名大学生恰好在四个不同公司的概率;
(2)X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和E(X).
(1)将4人安排四个公司中,共有44=256种不同放法.
记“4个人恰好在四个不同的公司”为事件A,
事件A共包含
个基本事件,
所以
,
所以4名大学生恰好在四个不同公司的概率
.
(2)方法1:X的可能取值为0,1,2,3,4,
,
,
,
,
.
所以X的分布列为:
X | 0 | 1 | 2 | 3 | 4 |
P |
|
|
|
|
|
所以X的数学期望为:
.
方法2:每个同学分到B公司的概率为
,
.
根据题意
~
,所以
,
4,
所以X的分布列为:
X | 0 | 1 | 2 | 3 | 4 |
P |
|
|
|
|
|
所以X的数学期望为
.
科目:高中数学 来源: 题型:
【题目】若直线
与x轴,y轴的交点分别为A,B,圆C以线段AB为直径.
(1)求圆C的标准方程;
(2)若直线l过点
且圆心C到l的距离为1,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
过点
且与直线
相切,圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
,
是曲线
上的两个点且直线
过
的外心,其中
为坐标原点,求证:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
是偶函数.
(1)求
的值;
(2)若函数
的图象在直线
上方,求
的取值范围;
(3)若函数
,
,是否存在实数
使得
的最小值为
?若存在,求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前n项和为
,对任意的正整数n,都有
成立,记
.
(1)求数列
与数列
的通项公式;
(2)求证:①
对
恒成立.②
对
恒成立,其中
为数列
的前n项和.
(3)记
,
为
的前n项和,求证:对任意正整数n,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
经过点
.
(1)求抛物线
的方程及其准线方程;
(2)设
为原点,过抛物线
的焦点作斜率不为0的直线
交抛物线
于两点
,
,直线
分别交直线
,
于点
和点
.求证:以
为直径的圆经过
轴上的两个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为
的正方体
中,
,
分别是
和
的中点.
![]()
(
)求异面直线
与
所成角的余弦值.
(
)在棱
上是否存在一点
,使得二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com