精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心为,点是圆内一个定点,点是圆上任意一点,线段的重直平分线与半径相交于点

1)求动点的轨迹的方程;

2)给定点,若过点的直线与轨迹相交于两点(均不同于点).证明:直线与直线的斜率之积为定值.

【答案】12)见解析

【解析】

1)根据垂直平分线的性质以及椭圆的定义,即可得出动点的轨迹的方程;

2)不过点,则斜率存在,设出直线的方程,联立椭圆方程,设而不解,利用韦达定理,将直线与直线的斜率之积表示出来并化简,证得定值.

解:(1)如图,由已知,圆心,半径

∵点在线段的垂直平分线上,则,又

,又

,则动点的轨迹是以为焦点,

长轴长的椭圆,从而

故所求轨迹方程为

2)由已知,直线过点,且不过点,则斜率存在,

,将其代入

,则成立,

,则

显然

设直线与直线的斜率分别为,则

即直线与直线的斜率之积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,向量,且.

1)求点的轨迹的方程;

2)过点作直线交曲线两点(之间).,直线的倾斜角,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为平面直角坐标系的坐标原点,焦点为圆的圆心.经过点的直线交抛物线两点,交圆两点,在第一象限,在第四象限.

(1)求抛物线的方程;

(2)是否存在直线使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,边分别是角的对边,已知.

1)建立适当的直角坐标系,求的内切圆方程;

2为内切圆上任意一点,求的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

1)求椭圆的方程;

2)若斜率为的直线与椭圆交于不同的两点,且线段的垂直平分线过点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Ey22pxp0)的焦点为F,以F为圆心,3p为半径的圆交抛物线EPQ两点,以线段PF为直径的圆经过点(0,﹣1),则点F到直线PQ的距离为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x0x1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价投入成本)×年销售量.

1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;

2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆C与两圆中的一个内切,另一个外切.

1)求C的圆心轨迹L的方程;

2)已知点,且PL上动点,求的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施持戒忍辱精进禅定与般若.若甲乙每人依次有放回地从这六片叶齿中随机取一片,则这两人选的叶齿对应的“度”相同的概率为______.

查看答案和解析>>

同步练习册答案