精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为1的正方体中,点分别是棱的中点,是侧面内一点,若平面,则线段长度的取值范围是

【答案】

【解析】

试题分析:如下图所示:

分别取棱的中点M、N,连接MN,连接M、N、E、F为所在棱的中点,MN,EF

MNEF,又MN平面AEFEF平面AEFMN平面AEF;

NE,=NE,四边形为平行四边形,

AE,又平面AEFAE平面AEF平面AEF,

MN=N,平面平面AEF,P是侧面内一点,且平面AEF,

则P必在线段MN上,在Rt中,

同理,在Rt中,求得= ∴△为等腰三角形,

当P在MN中点O时MN,此时最短,P位于M、N处时最长,

所以线段长度的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知方程

(1)求该方程表示一条直线的条件;

(2)当为何实数时,方程表示的直线斜率不存在?求出这时的直线方程;

(3)已知方程表示的直线轴上的截距为-3,求实数的值;

(4)若方程表示的直线的倾斜角是45°,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有

A.50种 B.49种 C.48种 D.47种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程,在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长度单位,且以原点为极轴,以轴正半轴为极轴中,圆的方程为

1求圆的圆心到直线的距离;

2设圆与直线交于点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)讨论是函数的极大值还是极小值;

(2)过点作曲线的切线,求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用的信息如下图。

引进这种设备后,第几年后该公司开始获利;

这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的前n项和为Sn,已知a1=2,且4S13S22S3成等差数列.

)求数列的通项公式;

)设,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人).现用分层抽样方法(按类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).

(1)类工人和类工人中个抽查多少工人

(2)从类工人中的抽查结果和从类工人中的抽查结果分别如下表1和表2.

表1:

表2:

先确定再完成下列频率分布直方图就生产能力而言类工人中个体间的差异程度与类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)

分别估计类工人和类工人生产能力的平均数并估计该工厂工人的生产能力的平均数(同一组中

的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别是,下顶点为,线段的中点为为坐标原点,如图,若抛物线轴的交点为,且经过.

(1)求椭圆的方程;

(2)为抛物线上的一动点,过点作抛物线的切线交椭圆于点两点,求面积的最大值.

查看答案和解析>>

同步练习册答案