精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
lnxx
-1.
(1)试判断函数f(x)的单调性;
(2)设m>0,求f(x)在[m,2m]上的最大值.
分析:(1)确定函数的定义域,求导函数,由导数的正负明确的函数的单调区间;
(2)分类讨论极值点与区间[m,2m]的位置关系,从而确定函数f(x)在[m,2m]上的单调性,即可求函数的最大值.
解答:解:(1)函数的定义域为(0,+∞)
求导函数,可得f′(x)=
1-lnx
x2

令f′(x)>0,而x>0,可得0<x<e,
令f′(x)<0,可得x>e,
∴函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞);
(2)①当0<2m≤e,即0<m≤
e
2
时,由(1)知,函数f(x)在[m,2m]上单调递增,
∴f(x)max=f(2m)=
ln2m
2m
-1,
②当m≥e时,由(1)知,函数f(x)在[m,2m]上单调递减,
∴f(x)max=f(m)=
lnm
m
-1,
③当m<e<2m,即
e
2
<m<e时,由(1)知,函数f(x)在[m,e]上单调递增,(e,2m]上单调递减,
∴f(x)max=f(e)=
1
e
-1,
∴f(x)在[m,2m]上的最大值为f(x)max=
ln2m
2m
-1,0<m≤
e
2
1
e
-1,
e
2
<m<e
lnm
m
-1,m≥e
点评:本题考查了利用导数研究函数的单调性,利用导数求函数的最值,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.利用导数研究函数问题时,经常会运用分类讨论的数学思想方法.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案