精英家教网 > 高中数学 > 题目详情

【题目】已知平面有一个公共点,直线满足:,则直线不可能满足以下哪种关系(

A.两两平行B.两两异面C.两两垂直D.两两相交

【答案】A

【解析】

三个平面一有个公共点说明三个平面两两相交,且三条交线交于一点,可以考虑在长方体某一顶点处的三个平面内分别检验,发现可以满足两两异面,两两垂直,两两相交的情况,不能满足两两平行.

取长方体某一顶点处的三个平面内分别检验,三条交线就可以满足两两垂直,两两相交,也易作出两两异面,如图:平面,平面,平面,取中点

两两异面,两两相交,两两垂直,

对于两两平行,考虑反证法:假设符合题意的三个平面内直线两两平行,则任意两条直线形成的平面共三个,这三个平面要么相交于同一条直线,要么三条交线两两平行,均与题目矛盾.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1l2接通.已知AB = 60mBC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设EFB= α,矩形区域内的铺设水管的总费用为W

1)求W关于α的函数关系式;

2)求W的最小值及相应的角α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8.

有时可用函数

描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(),表示对该学科知识的掌握程度,正实数a与学科知识有关.

1) 证明:当时,掌握程度的增加量总是下降;

2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为,,

.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度得到的图象,若的对称中心为坐标原点,则关于函数有下述四个结论:

的最小正周期为 ②若的最大值为2,则

有两个零点 在区间上单调

其中所有正确结论的标号是(

A.①③④B.①②④C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;

方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.

方案乙:员工连续三次抽奖,每次中奖率均为,每次中奖均可获奖金400元.

(1)求某员工选择方案甲进行抽奖所获奖金(元)的分布列;

(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇函数,a为常数.

1)求a的值;

2)判断函数时单调性并证明;

3)若对于区间上的每一个x的值,不等式恒成立,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自201911日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?

2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量表示抽到作为宣讲员的收入在元的人数,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案