精英家教网 > 高中数学 > 题目详情

【题目】圆x2+y2+2x﹣4y﹣6=0的圆心和半径分别是(
A.(﹣1,﹣2),11
B.(﹣1,2),11
C.(﹣1,﹣2),
D.(﹣1,2),

【答案】D
【解析】解:将圆x2+y2+2x﹣4y﹣6=0化成标准方程,
得(x+1)2+(y﹣2)2=11,
∴圆心的坐标是(﹣1,2),半径r=
故选D.
【考点精析】关于本题考查的圆的一般方程,需要了解圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)某中学欲制定一项新的制度,学生会为此进行了问卷调查,所有参与问卷调查的人中,持有支持不支持既不支持也不反对的人数如下表所示:


支持

既不支持也不反对

不支持

高一学生

800

450

200

高二学生

100

150

300

)在所有参与问卷调查的人中,用分层抽样的方法抽取个人,已知从支持的人中抽取了45人,求的值;

)在持不支持态度的人中,用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有1人是高一学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα)(0≤α<2π), =(﹣ ).
(1)若 ,求α的值;
(2)若两个向量 + 垂直,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn , 数列{bn}是等比数列,首项b1=1,且a2b2=12,S3+b2=20.
(1)求{an}和{bn}的通项公式.
(2)令Cn=nbn(n∈N+),求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|≤ )的图象与坐标轴的三个交点为P,Q,R,且P(1,0),Q(m,0)(m>0),∠PQR= ,M为QR的中点,|PM|=

(1)求m的值及f(x)的解析式;
(2)设∠PRQ=θ,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上上分别写着数字1,2,3,5,同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.

1)求事件不小于6”的概率;

2为奇数的概率和为偶数的概率是不是相等?证明你作出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,点 分别是棱 上的点,且

(Ⅰ)证明:平面平面

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)
(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;
(2)在(1)的条件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)||x|≤2,|y|≤1},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=1内的概率.
(2)若x,y都是整数,求以(x,y)为坐标的点落在圆x2+y2=1内或该圆上的概率.

查看答案和解析>>

同步练习册答案