【题目】如图,在四棱锥S-ABCD中,四边形ABCD菱形,
,平面
平面 ABCD,
.E,F 分别是线段 SC,AB 上的一点,
.
![]()
(1)求证:
平面SAD;
(2)求平面DEF与平面SBC所成锐二面角的正弦值.
【答案】(1)证明见解析
(2)![]()
【解析】
(1)先证明平行四边形AGEF,得到AG∥EF,再证明EF∥平面SAD;
(2)以OA,OB,OS所在直线为x,y,z轴,建立空间直角坐标系如图,求出平面DEF的法向量和平面SBC的一个法向量,利用向量的夹角公式求出二面角的余弦值,从而求出平面DEF与平面SBC所成锐二面角的正弦值.
(1)过点E作EG∥DC,如图,连接AG,因为
,所以
,
故EG∥CD,EG
,由
,AF
,
因为菱形ABCD,所以EG∥AF,EG=AF,
故平行四边形AGEF,所以AG∥EF,
又
平面
,
平面
,所以
平面
.
(2)取AD中点O,等腰三角形SAD,故SO⊥AD,连接OB,
菱形ABCD,∠ADC=120°,所以OB⊥OA,
又平面SAD⊥平面ABCD所以SO⊥平面ABCD,
以OA,OB,OS所在直线为x,y,z轴,建立空间直角坐标系如图,
因为SA=SD=3
,所以AD=AB=CD=6,SO=3,
∠ADC=120°,所以AF=2,OB
,AO=OD=3,
所以A(3,0,0),D(﹣3,0,0),S(0,0,3),
F(2,
,0),B(0,3
,0),C(﹣6,3
,0),
又
(﹣2,
,﹣1),得E(﹣2,
,2),
所以
,
,
,
,
设平面DEF的一个法向量为
,
由
,得
,故![]()
设平面SBC的一个法向量为
,
由
,得
,故
,
所以
,
平面DEF与平面SBC所成锐二面角的正弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】若椭圆
的焦点在x轴上,离心率为
,依次连接
的四个顶点所得四边形的面积为40.
(1)试求
的标准方程;
(2)若曲线M上任意一点到
的右焦点的距离与它到直线
的距离相等,直线
经过
的下顶点和右顶点,
,直线
与曲线M相交于点P、Q(点P在第一象限内,点Q在第四象限内),设
的下顶点是B,上顶点是D,且
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知{an}是等差数列,其前n项和Sn=n2﹣2n+b﹣1,{bn}是等比数列,其前n项和Tn
,则数列{ bn +an}的前5项和为( )
A.37B.-27C.77D.46
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为
,以下结论中不正确的为
![]()
![]()
A. 15名志愿者身高的极差小于臂展的极差
B. 15名志愿者身高和臂展成正相关关系,
C. 可估计身高为190厘米的人臂展大约为189.65厘米,
D. 身高相差10厘米的两人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的值域为A,
.
(1)当
的为偶函数时,求
的值;
(2) 当
时,
在A上是单调递增函数,求
的取值范围;
(3)当
时,(其中
),若
,且函数
的图象关于点
对称,在
处取 得最小值,试探讨
应该满足的条件.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com