精英家教网 > 高中数学 > 题目详情

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:

(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.

(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.

【答案】(

【解析】试题分析:(1)根据表中已知数据,解得A=5ω=2φ=-.从而可补全数据,解得函数表达式为2)由()及函数y=Asinωx+φ)的图象变换规律得gx=5sin2x+2θ-).令2x+2θ-=kπ,解得kZ.令,解得kZ.由θ0可得解

试题解析:()根据表中已知数据,解得. 数据补全如下表:

且函数表达式为.............6

)由()知,得.

因为的对称中心为.

,解得.

由于函数的图象关于点成中心对称,令

解得. 可知,当时, 取得最小值..............12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1在区间上画出函数的图象

2设集合试判断集合之间的关系并给出证明

3求证在区间的图象位于函数图象的上方

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且,数列为等差数列,且 .

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,四边形为正方形,点分别为线段上的点,

1求证:平面平面

2求证:当点不与点重合时,平面

3时,求点到直线距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用的信息如下图。

引进这种设备后,第几年后该公司开始获利;

这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在数列{an}中,Sn为其前n项和,若an>0,且4Sn=an2+2an+1(n∈N*),数列{bn}为等比数列,公比q>1,b1=a1,且2b2b4,3b3成等差数列.

(1)求{an}与{bn}的通项公式;

(2)令cn= ,若{cn}的前项和为Tn,求证:Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是拋物线的焦点, 若点,

1)求的值;

2)若直线经过点且与交于(异于)两点, 证明: 直线与直线的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

时,求函数的单调区间;

若函数的图象在点处的切线的倾斜角为函数当且仅当在处取得极值,其中的导函数,求取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,分别在上,且,沿将四边形折成四边形,使点在平面上的射影在直线上,且.

1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案