【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
)在某一个周期内的图象时,列表并填入了部分数据,如表:
![]()
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为
,求θ的最小值.
科目:高中数学 来源: 题型:
【题目】设函数
.
![]()
(1)在区间
上画出函数
的图象;
(2)设集合
,
.试判断集合
和
之间的关系,并给出证明;
(3)当
时,求证:在区间
上,
的图象位于函数
图象的上方.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
底面
,四边形
为正方形,点
分别为线段
上的点,
.
![]()
(1)求证:平面
平面
;
(2)求证:当点
不与点
重合时,
平面
;
(3)当
时,求点
到直线
距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用
的信息如下图。
![]()
(Ⅰ)求
;
(Ⅱ)引进这种设备后,第几年后该公司开始获利;
(Ⅲ)这种设备使用多少年,该公司的年平均获利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在数列{an}中,Sn为其前n项和,若an>0,且4Sn=an2+2an+1(n∈N*),数列{bn}为等比数列,公比q>1,b1=a1,且2b2,b4,3b3成等差数列.
(1)求{an}与{bn}的通项公式;
(2)令cn=
,若{cn}的前项和为Tn,求证:Tn<6.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)若函数
的图象在点
处的切线的倾斜角为
,且函数
当且仅当在
处取得极值,其中
为
的导函数,求
的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com