精英家教网 > 高中数学 > 题目详情

在抛物线上,求一点P,使P到直线的距离最短,并求距离的最小值.

 

【答案】

即为最小值.

【解析】

试题分析:解:设与平行并且与相切的直线为,切点为

消去

,得

所以两平行线间的距离即为所求的最小值.

代入,即得即为最小值.

即得点

考点:本题主要考查抛物线的标准方程及几何性质,直线与抛物线的位置关系。

点评:基础题型,解答此类问题,一般两种思路,一是建立距离的函数表达式,二是数形结合,本解法如此。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

在抛物线上,求一点P(      )使P到焦点F与到点A(32)的距离之和为最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线有光学性质: 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0)  一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l: 2x-4y-17=0上的点N,再折射后又射回点M(如下图所示)

 (1)设PQ两点坐标分别为(x1,y1)、(x2,y2),证明:y1·y2=-p2

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0).一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再折射后又射回点M(如图所示).

(1)设P、Q两点坐标分别为(x1,y1)、(x2,y2),证明y1·y2=-p2

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出.今有抛物线y2=2px(p>0),一光源在点M(,4)处,由其发出的光线沿平行于抛物线对称轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线对称轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再折射后又射回点M(如图所示).

(1)设P、Q两点的坐标分别为(x1,y1),(x2,y2),证明:y1y2=-p2;

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案