精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|x-a|.

(Ⅰ)若不等式f(x)≥3的解集为{x|x≤1或x≥5},求实数a的值;

(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+4)≥m对一切实数x恒成立,求实数m的取值范围.

 

【答案】

(Ⅰ)由f(x)≥3得|x-a|≥3,解得x≤a-3或x≥a+3.

又已知不等式f(x)≥3的解集为{x|x≤-1或x≥5},所以,解得a=2.……5分

(Ⅱ)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+4),

于是g(x)=|x-2|+|x+2|=[JB({]-2x,x<-24,-2≤x≤22x,x>2[JB)] 所以当x<-2时,g(x)>4;当-2≤x≤2时,g(x)=4;当x>2时,g(x)>4。

综上可得,g(x)的最小值为4.

从而若f(x)+f(x+4)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,4].

法二:(Ⅰ)同法一.

(Ⅱ)当a=2时,f(x)=|x-2|.设g(x)=f(x)+f(x+4).

由|x-2|+|x+2|≥|(x-2)-(x+2)|=4(当且仅当-2≤x≤2时等号成立),得g(x)的最小值为4.从而,若f(x)+f(x+4)≥m,即g(x)≥m对一切实数x恒成立.则m的取值范围为(-∞,4]?

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案