精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
3
=1
,则当在此椭圆上存在不同两点关于直线y=4x+m对称时m的取值范围为(  )
分析:设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),利用平方差法与直线y=4x+m可求得x0=-m,y0=-3m,点M(x0,y0)在椭圆内部,将其坐标代入椭圆方程即可求得m的取值范围.
解答:解:∵
x2
4
+
y2
3
=1
,故3x2+4y2-12=0,
设椭圆上两点A(x1,y1)、B(x2,y2)关于直线y=4x+m对称,AB中点为M(x0,y0),
则 3x12+4y12=12,①
3x22+4y22=12 ②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,即 3•2x0•(x1-x2)+4•2y0•(y1-y2)=0,
y1-y2
x1-x2
=-
3
4
x0
y0
=-
1
4

∴y0=3x0,代入直线方程y=4x+m得x0=-m,y0=-3m;
因为(x0,y0)在椭圆内部,
∴3m2+4•(-3m)2<12,即3m2+36m2<12,解得-
2
13
13
<m<
2
13
13

故选B.
点评:本题考查直线与圆锥曲线的综合问题,着重考查平方差法的应用,突出化归思想的考查,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案