精英家教网 > 高中数学 > 题目详情

【题目】已知圆,椭圆的离心率为,圆上任意一点处的切线交椭圆于两点,当恰好位于轴上时,的面积为.

1)求椭圆的方程;

2)试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.

【答案】(1)(2)为定值且定值为,详见解析

【解析】

1)根据题意,结合图形特点求解出的长,再结合椭圆的离心率特点代换出关于的椭圆标准方程,将点坐标代入椭圆方程即可求得标准方程

2)分两种情况进行讨论,当过点的圆的切线斜率为0或不存在时,,当斜率存在时,设切线方程为,采用解析几何方法联立切线与椭圆标准方程,得出关于两点横坐标的韦达定理,再用弦长公式表示出,最终将表达式进行化简求值即可

解:(1)由椭圆的离心率为

∴椭圆的方程为.

由圆的切线性质、圆的对称性及的面积为得:

,∴

,则,将其代入椭圆方程得

∴椭圆的方程为.

2)①当过点的圆的切线斜率为0或不存在时,

②当过点的圆的切线斜率存在且不为0时,设切线的方程为

,∴,即.

联立直线和椭圆的方程得:,即

,则

,

,解得

综上所述,为定值且定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.

1:甲套设备的样本的频数分布表

质量指标值

频数

1

5

18

19

6

1

1:乙套设备的样本的频率分布直方图

1)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;

2)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;

甲套设备

乙套设备

合计

合格品

不合格品

合计

0.15

0.10

0.050

2.072

2.706

3.841

:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数,当时,,则下列命题正确的是(

A.时,

B.函数3个零点

C.的解集为

D.,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游胜地欲开发一座景观山,从山的侧面进行勘测,迎面山坡线由同一平面的两段抛物线组成,其中所在的抛物线以为顶点、开口向下,所在的抛物线以为顶点、开口向上,以过山脚(点)的水平线为轴,过山顶(点)的铅垂线为轴建立平面直角坐标系如图(单位:百米).已知所在抛物线的解析式所在抛物线的解析式为

(1)求值,并写出山坡线的函数解析式;

(2)在山坡上的700米高度(点)处恰好有一小块平地,可以用来建造索道站,索道的起点选择在山脚水平线上的点处,(米),假设索道可近似地看成一段以为顶点、开口向上的抛物线当索道在上方时,索道的悬空高度有最大值,试求索道的最大悬空高度;

(3)为了便于旅游观景,拟从山顶开始、沿迎面山坡往山下铺设观景台阶,台阶每级的高度为20厘米,长度因坡度的大小而定,但不得少于20厘米,每级台阶的两端点在坡面上(见图).试求出前三级台阶的长度(精确到厘米),并判断这种台阶能否一直铺到山脚,简述理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为两个不同的平面,为两条不同的直线,有以下命题:

①若,则.②若,则.③若,则.④若,则.

其中真命题有()

A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线 的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线 的极坐标方程为 .

1)求直线和曲线的普通方程;

2)已知点,且直线和曲线交于两点,求 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面的中点,相交于点.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出了关于复数的四种类比推理:

①复数的加减法运算可以类比多项式的加减法运算法则;

②由向量的性质,类比得到复数的性质

③方程有两个不同实数根的条件是可以类比得到方程有两个不同复数根的条件是

④由向量加法的几何意义可以类比得到复数加法的几何意义其中类比错误的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是单调函数,求的值;

2)若对恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案