【题目】设函数
.
(1)若
,求函数在
的切线方程;
(2)若函数
在
上为单调递减函数,求实数
的最小值;
(3)若存在
,使得
成立,求实数
的取值范围.
【答案】(1)
;(2)
;(3)
.
【解析】试题分析: (1)若
,写出函数
,求出切点和斜率,即可写出切线方程;(2) 函数可化为
,
在
上为单调递减函数,即导函数小于等于0在在
上恒成立,分离参变量,转化为构造出的新函数最值问题,对新函数求导,判断单调性求出最值即可;(3) 存在
,使得
成立,即
,又
,即f(x)min
,根据
的导函数对参数进行讨论,分别得出单调性进而求出最小值,代入不等式求出a的范围.
试题解析:(1)若
,则
,
,
,
,
所以所求切线为![]()
(2)函数可化为
,
在
上为单调递减函数,
在
上恒成立,
恒成立,令
,则
,
可知
在
单调递增,在
单调递减,所在
,![]()
最小值是![]()
(3)命题等价于“当
时,有f(x)min
f′(x)max+a”,
由(Ⅰ)知,当x∈[e,e2]时,lnx∈[1,2],
,
=
,
![]()
问题等价于:“当x∈[e,e2]时,有f(x)min
”,
①a
时,由(2),f(x)在[e,e2]上为减函数,
则f(x)min=f(e2)=![]()
∴
.
![]()
②当![]()
由于
在
上为增函数,所以
的值域为![]()
即![]()
若
,即
,
恒成立,所以
为增函数,于是
,不合题意
若
,
,由
的单调性和值域知
存在唯一
,使得
,且
,
,
为减函数
,
,
为增函数
![]()
所以![]()
与
矛盾
综上,实数a的取值范围为
.
科目:高中数学 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过
站的地铁票价如下表:
乘坐站数 |
|
|
|
票价(元) |
|
|
|
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过
站.甲、乙乘坐不超过
站的概率分别为
,
;甲、乙乘坐超过
站的概率分别为
,
.
(1)求甲、乙两人付费相同的概率;
(2)设甲、乙两人所付费用之和为随机变量
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误的是( )
![]()
A. 旅游总人数逐年增加
B. 2017年旅游总人数超过2015、2016两年的旅游总人数的和
C. 年份数与旅游总人数成正相关
D. 从2014年起旅游总人数增长加快
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,点
的坐标为
,直线
的参数方程为
(
为参数).以坐标原点
为极点,以
轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆
极坐标方程为
.
(Ⅰ)当
时,求直线
的普通方程和圆
的直角坐标方程;
(Ⅱ)直线
与圆
的交点为
、
,证明:
是与
无关的定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018届宁夏育才中学高三上学期期末】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的.
(1)根据频率分布直方图计算图中各小长方形的宽度;
![]()
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
![]()
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
参考公式: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018届北京市海淀区】如图,三棱柱
侧面
底面
, ![]()
,
分别为棱
的中点.
![]()
(Ⅰ)求证:
;
(Ⅱ)求三棱柱
的体积;
(Ⅲ)在直线
上是否存在一点
,使得
平面
?若存在,求出
的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,
种类型的快餐每份进价为
元,并以每份
元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以
元的价格作特价处理,且全部售完.
(1)若该代卖店每天定制
份
种类型快餐,求
种类型快餐当天的利润
(单位:元)关于当天需求量
(单位:份,
)的函数解析式;
(2)该代卖店记录了一个月
天的
种类型快餐日需求量(每天20:00之前销售数量)
日需求量 |
|
|
|
|
|
|
天数 |
|
|
|
|
|
|
(i)假设代卖店在这一个月内每天定制
份
种类型快餐,求这一个月
种类型快餐的日利润(单位:元)的平均数(精确到
);
(ii)若代卖店每天定制
份
种类型快餐,以
天记录的日需求量的频率作为日需求量发生的概率,求
种类型快餐当天的利润不少于
元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com