【题目】已知在数列
中,
,
,
.
(1)证明数列
是等差数列,并求
的通项公式;
(2)设数列
的前
项和为
,证明:
.
【答案】(1)
(2)见解析
【解析】试题分析:(1)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明
(
,
为常数;二是等差中项法,证明
,若证明一个数列不是等差数列,则只需举出反例即可;(2)观测数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的.(3)在做题时注意观察式子特点选择有关公式和性质进行化简,这样给做题带来方便,掌握常见求和方法,如分组转化求和,裂项法,错位相减.
试题解析:(1)由
,得
, (2分)
两式相减,得
,即
, (4分)
所以数列
是等差数列. (5分)
由
,得
,所以
, (6分)
故![]()
. (8分)
(2)因为
,(11分)
所以![]()
![]()
(
) (14分)
科目:高中数学 来源: 题型:
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数
与答题正确率
的关系,对某校高三某班学生进行了关注统计,得到如表数据:
| 1 | 2 | 3 | 4 |
| 20 | 30 | 50 | 60 |
(1)求
关于
的线性回归方程,并预测答题正确率是
的强化训练次数(保留整数);
(2)若用
(
)表示统计数据的“强化均值”(保留整数),若“强化均值”的标准差在区间
内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
,样本数据
,
,…,
的标准差为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某技术公司开发的某种产品中随机抽取200件,测量这些产品的一项质量指标值(记为
),由测量结果得到如下频率分布直方图:
![]()
公司规定:当
时,产品为正品;当
时,产品为次品,公司每生产一件这种产品,若是正品,则盈利90元;若是次品,则亏损30元,记
的分布列和数学期望;
由频率分布直方图可以认为,
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
(同一组中的数据用该区间的中点值作代表)
①利用该正态分布,求
;
②某客户从该公司购买了500件这种产品,记
表示这500件产品中该项质量指标值位于区间
的产品件数,利用①的结果,求
.
附:
,
若
,则
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数).以直角坐标系的原点
为极点,
轴的正半轴为极轴建立坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)若过点
的直线
与
交于
,
两点,与
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4,坐标系与参数方程
已知在平面直角坐标系xOy中,椭圆C的方程为
,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求|
x+y﹣1|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4,坐标系与参数方程
已知在平面直角坐标系xOy中,椭圆C的方程为
,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求|
x+y﹣1|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com