精英家教网 > 高中数学 > 题目详情
若函数f(x)在(0,+∞)上恒有xf′(x)>f(x)成立(其中f′(x)为f(x)的导函数),则称这类函数为A类函数.
(1)若函数g(x)=x2-1,试判断g(x)是否为A类函数;
(2)若函数是A类函数,求函数h(x)的单调区间;
(3)若函数f(x)是A类函数,当x1>0,x2>0时,证明f(x1)+f(x2)<f(x1+x2).
【答案】分析:(1)因为g'(x)=2x,所以xg'(x)-g(x)=2x2-(x2-1)=x2+1>0在(0,+∞)上恒成立,由此能够导出g(x)=x2-1是A型函数.
(2),由xh'(x)>h(x),得,因为x>0,所以可化为2(a-1)<2x+xlnx,由此进行分类讨论,能求出函数h(x)的单调区间.
(3)函数f(x)是(0,+∞)上的每一点处都有导数,且xf'(x)>f(x)在(0,+∞)上恒成立,设在(0,+∞)时恒成立,所以函数在(0,+∞)上是增函数,由此能够证明f(x1)+f(x2)<f(x1+x2).
解答:(1)解:因为g'(x)=2x,
所以xg'(x)-g(x)=2x2-(x2-1)=x2+1>0在(0,+∞)上恒成立,
即xg'(x)>g(x)在(0,+∞)上恒成立,
所以g(x)=x2-1是A型函数.…(2分)
(2)
由xh'(x)>h(x),

因为x>0,所以可化为2(a-1)<2x+xlnx,
令p(x)=2x+xlnx,p'(x)=3+lnx,
令p'(x)=0,得x=e-3
当x∈(0,e-3)时,p'(x)<0,p(x)是减函数;
当x∈(e-3,+∞)时,p'(x)>0,p(x)是增函数,
所以
所以2(a-1)<-e-3.…(4分)
①当a=0时,由,得x<1,
所以增区间为(0,1),减区间为(1,+∞);
②当a<0时,由,得0<x<1,
所以增区间为(0,1),减区间为(1,+∞);
③当时,得x<1,或
所以增区间为(0,1),,减区间为
④当时,h'(x)≥0,
所以,函数增区间为(0,+∞);
时,由,得,或x>1,
所以增区间为(1,+∞),a1•a2•…•ak-1>1×2×…×(k-1)≥2k-2>k,
减区间为.   …(10分)
(3)证明:函数f(x)是(0,+∞)上的每一点处都有导数,
且xf'(x)>f(x)在(0,+∞)上恒成立,
在(0,+∞)时恒成立,
所以函数在(0,+∞)上是增函数,…(12分)
因为x1>0,x2>0,
所以x1+x2>x1>0,x1+x2>x2>0,
所以F(x1+x2)>F(x1),F(x1+x2)>F(x2),
,(14分)
所以
两式相加,得f(x1)+f(x2)<f(x1+x2).(16分)
点评:本题考查查函数的单调区间的求法,考查不等式的证明,综合性强,难度大,是高考的重点.解题时要认真审题,准确理解A型函数的概念,合理地运用导数的性质进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2mx+m2+4m-2.
(1)若函数f(x)在区间[0,1]上是单调递减函数,求实数m的取值范围;
(2)若函数f(x)在区间[0,1]上有最小值-3,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
12
x2+(a+1)x+1

(1)当a=-1时,求函数f(x)的单调增区间;
(2)若函数f(x)在(0,+∞)上是增函数,求实数a的取值范围;
(3)若a>0,且对任意x1,x2∈(0,+∞),x1≠x2,都有|f(x1)-f(x2)|>2|x1-x2|,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+b,其中a,b∈R.
(1)若函数f(x)在(0,2)上单调递增,求实数a的取值范围.
(2)当x∈(0,1]时,y=f(x)图象上任意一点处的切线的倾斜角为θ,且0≤θ≤
π4
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山一模)已知函数f(x)=ln(1+x)-mx.
(I)当m=1时,求函数f(x)的单调递减区间;
(II)求函数f(x)的极值;
(III)若函数f(x)在区间[0,e2-1]上恰有两个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)lnx,a∈R.
(Ⅰ)当a=0时,求函数f(x)的极小值;
(Ⅱ)若函数f(x)在(0,+∞)上为增函数,求a的取值范围.

查看答案和解析>>

同步练习册答案