精英家教网 > 高中数学 > 题目详情
(2013•怀化三模)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件.若作广告宣传,广告费为n千元时比广告费为(n-1)千元时多卖出
b2n
件,(n∈N*).
(1)试写出销售量s与n的函数关系式;
(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大?
分析:对于(1)中的函数关系,设广告费为n千元时的销量为sn,则sn-1表示广告费为(n-1)元时的销量,由题意,sn--sn-1=
b
2n
,可知数列{sn}不成等差也不成等比数列,但是两者的差
b
2n
构成等比数列,对于这类问题一般有以下两种方法求解:一、直接列式:由题,s=b+
b
2
+
b
22
+
b
23
+…+
b
2n
=b(2-
1
2n

解法二、利用累差叠加法:S1-S0=
b
2
S2-S1=
b
22
,…Sn-Sn-1=
b
2n
,累加结合等比数列的求和公式可求Sn
(2))b=4000时,s=4000(2-
1
2n
),设获利为Tn,则有Tn=s•10-1000n=40000(2-
1
2n
)-1000n,
欲使Tn最大,根据数列的单调性可得
TnTn+1
TnTn-1
,代入结合n为正整数解不等式可求n,进而可求S的最大值
解答:(1)解法一、直接列式:由题,s=b+
b
2
+
b
22
+
b
23
+…+
b
2n
=b(2-
1
2n
)(广告费为1千元时,s=b+
b
2
;2千元时,s=b+
b
2
+
b
22
;…n千元时s=b+
b
2
+
b
22
+
b
23
+…+
b
2n

解法二、(累差叠加法)设s0表示广告费为0千元时的销售量,
由题:
s1-s0=
b
2
s2-s1=
b
22
sn-sn-1=
b
2n
,相加得Sn-S0=
b
2
+
b
22
+
b
23
+…+
b
2n

即Sn=b+
b
2
+
b
22
+
b
23
+…+
b
2n
=b(2-
1
2n
).
(2)b=4000时,s=4000(2-
1
2n
),设获利为t,则有t=s•10-1000n=40000(2-
1
2n
)-1000n
欲使Tn最大,则
TnTn+1
TnTn-1
,得
n≥5
n≤5
,故n=5,此时s=7875.
即该厂家应生产7875件产品,做5千元的广告,能使获利最大.
点评:本题主要考查了数列的叠加求解通项公式,利用数列的单调性求解数列的最大(小)项,解题中要注意函数思想在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化三模)一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)计算 (log29)•(log34)=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)若正数a,b,c满足a+b+c=1,则
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化三模)每年的三月十二日是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两批树苗中各抽了10株,测得髙度如下茎叶图,(单位:厘米),规定树苗髙于132厘米为“良种树苗”.

(I)根据茎叶图,比较甲、乙两批树苗的高度,哪种树苗长得整齐?
(Ⅱ)设抽测的10株甲种树苗高度平均值为
.
x
,将这10株树苗的高度依次输入如图程序框图进行运算,问输出的S为多少?.
(Ⅲ)从抽测的甲乙两种“良种树苗”中任取2株,至少1株是甲种树苗的概率.

查看答案和解析>>

同步练习册答案