【题目】平面内任意一点
到两定点
、
的距离之和为
.
(1)若点
是第二象限内的一点且满足
,求点
的坐标;
(2)设平面内有关于原点对称的两定点
,判别
是否有最大值和最小值,请说明理由?
科目:高中数学 来源: 题型:
【题目】如图,平行四边形
中,
,
,
为
边的中点,沿
将
折起使得平面
平面
.
![]()
(1)求证:平面
平面
;
(2)求四棱锥
的体积;
(3)求折后直线
与平面
所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线
的参数方程为
(
为参数),圆
的极坐标方程为
.
(1)求直线
的普通方程与圆
的直角坐标方程;
(2)设圆
与直线
交于
两点,若点
的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为
、
、
,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.
(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;
(Ⅱ)记三个项目中通过考试的个数为
,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥
的四个顶点都在球
的表面上,
平面
,
,
,
,
,则:(1)球
的表面积为__________;(2)若
是
的中点,过点
作球
的截面,则截面面积的最小值是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com