已知椭圆
的对称中心为原点
,焦点在
轴上,左右焦点分别为和,且||=2,离心率
.
(1)求椭圆
的方程;
(2)过的直线与椭圆
相交于A,B两点,若
的面积为
,求直线
的方程.
(1)
;
(2)
或
.
解析试题分析:试题分析:(1)设椭圆的方程,用待定系数法求出
的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式
:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.
试题解析:(1)椭圆C的方程是
4分
(2)当直线
轴时,可得
的面积为3,不合题意。
当直线
与
轴不垂直时,设其方程为
,代入椭圆方程得:![]()
则
,可得![]()
又圆
的半径
,∴
的面积![]()
=
,化简得:
,得k=±1,
所以:直线
的方程为:
或
。 12分
考点:(1)椭圆的方程; (2)直线与椭圆的综合问题.
科目:高中数学 来源: 题型:解答题
如图所示,
、
分别为椭圆
:![]()
的左、右两个焦点,
、
为两个顶点,已知顶点
到
、
两点的距离之和为
.
(1)求椭圆
的方程;
(2)求椭圆
上任意一点
到右焦点
的距离的最小值;
(3)作
的平行线交椭圆
于
、
两点,求弦长
的最大值,并求
取最大值时
的面积.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P,Q且
.
(I)求点T的横坐标
;
(II)若以F1,F2为焦点的椭圆C过点
.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,设
,若
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
分别是椭圆
的左,右焦点.
(1)若
是椭圆在第一象限上一点,且
,求
点坐标;(5分)
(2)设过定点
的直线
与椭圆交于不同两点
,且
为锐角(其中
为原点),求直线
的斜率
的取值范围.(7分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在平面直角坐标系
中,设椭圆
,其中
,过椭圆
内一点![]()
的两条直线分别与椭圆交于点
和
,且满足
,
,其中
为正常数. 当点
恰为椭圆的右顶点时,对应的
.
(1)求椭圆
的离心率;
(2)求
与
的值;
(3)当
变化时,
是否为定值?若是,请求出此定值;若不是,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,
F2在x轴上,离
心率为
.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为
________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com