【题目】已知函数
,
为常数,且
.
(1)证明函数
的图象关于直线
对称;
(2)当
时,讨论方程
解的个数;
(3)若
满足
,但
,则称
为函数
的二阶周期点,则
是否有两个二阶周期点,说明理由.
【答案】(1)略;(2)当
或
时,方程有2个解;当
时,方程有3个解;当
时,方程有4个解;(3)只有
是二阶周期点.
【解析】
(1)根据函数对称的性质即可证明函数
的图像关于直线
对称。
(2)当
时,求出
的表达式,利用数形结合得到结论。
(3)根据阶周期点的定义,分别求满足条件的
,即可得到结论。
(1)证明:设点
为
上任意一点,则
所以,函数
的图像关于直线
对称。
(2)当
时
,
所以,当
时,方程有
个解;
时,方程有
个解;当
时,方程有
个解;当
时,方程有
个解。
综上:当
或
时,方程有
个解;当
时,方程有
个解;当
时,方程有
个解。
(3)因为
,
所以当
,
若
,即
,
若
,即
,
当
,同理可得:
时,
;
时,
.
所以
,
从而由
得
,
又
,
,
,
所以只有
是二阶周期点。
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度
(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
![]()
(1)要使倾斜后容器内的溶液不会溢出,角
的最大值是多少?
(2)现需要倒出不少于
的溶液,当
时,能实现要求吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
,以
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的参数方程为
(
为参数),点
时曲线
上两点,点
的极坐标分别为
,
.
(1)写出曲线
的普通方程和极坐标方程;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的普通方程为
.在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)写出圆
的参数方程和直线
的直角坐标方程;
(2)设点
在
上,点Q在
上,求
的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,
平面PCD,
,
,
,E为AD的中点,AC与BE相交于点O.
![]()
(1)证明:
平面ABCD.
(2)求直线BC与平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的首项
,对任意的
,都有
,数列
是公比不为
的等比数列.
(1)求实数
的值;
(2)设
数列
的前
项和为
,求所有正整数
的值,使得
恰好为数列
中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:直线关于圆的圆心距单位
圆心到直线的距离与圆的半径之比.
(1)设圆
,求过点
的直线关于圆
的圆心距单位
的直线方程.
(2)若圆
与
轴相切于点
,且直线
关于圆
的圆心距单位
,求此圆
的方程.
(3)是否存在点
,使过点
的任意两条互相垂直的直线分别关于相应两圆
与
的圆心距单位始终相等?若存在,求出相应的
点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com