精英家教网 > 高中数学 > 题目详情

【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:

产量(单位:斤)

播种方式

[840860

[860880

[880,900

[900,920

[920,940

直播

4

8

18

39

31

散播

9

19

22

32

18

约定亩产超过900斤(含900斤)为产量高,否则为产量低

1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)

2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为产量高播种方式有关?

产量高

产量低

合计

直播

散播

合计

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

【答案】1100块直播农田的平均产量为907斤,(2)有99%的把握认为产量高播种方式有关.

【解析】

1)根据,算出答案即可

2)由题目中给的数据完善列联表,然后算出的观察值即可

1100块直播农田的平均产量为:

(斤)

2)由题中所给的数据得到列联表如下所示:

产量高

产量低

合计

直播

70

30

100

散播

50

50

100

合计

120

80

200

由表中的数据可得的观察值

所以有99%的把握认为产量高播种方式有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系内,点 在曲线,(为参数,)上运动,以为极轴建立极坐标系.直线的极坐标方程为.

()写出曲线的标准方程和直线的直角坐标方程;

()若直线与曲线相交于两点,点在曲线上移动,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,中点,点上且平面延长线上,,交,且

(1)证明:平面

(2)设点在线段上,若二面角,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于MN两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,分别是椭圆的左、右焦点,直线与椭圆交于不同的两点,且.

1)求椭圆的方程;

2)已知直线经过椭圆的右焦点是椭圆上两点,四边形是菱形,求直线的方程;

3)已知直线不经过椭圆的右焦点,直线的斜率依次成等差数列,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,点在此抛物线上,,不过原点的直线与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.

(1)求抛物线C的方程;

(2)证明:直线恒过定点;

(3)若线段AB中点的纵坐标为2,求此时直线和圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面及直线,则下列说法错误的个数是( ).

①若直线与平面所成角都是,则这两条直线平行;②若直线与平面所成角都是,则这两条直线不可能垂直;③若直线垂直,则这两条直线与平面不可能都垂直;④若直线平行,则这两条直线中至少有一条与平面平行.

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案