【题目】已知函数
(
).
(1)证明:当
时,
在
上是增函数;
(2)是否存在实数
,只有唯一正数
,对任意正数
,使不等式
恒成立?若存在,求出这样的
;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】设抛物线C:
的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若
,求线段
中点M的轨迹方程;
(2)若直线AB的方向向量为
,当焦点为
时,求
的面积;
(3)若M是抛物线C准线上的点,求证:直线
的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是定义在
上的函数,若存在
,使得
在
单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间称为含峰区间,其含峰区间的长度为:
.
(1)判断下列函数中,哪些是“
上的单峰函数”?若是,指出峰点;若不是,说出原因;
;
(2)若函数
是
上的单峰函数,求实数
的取值范围;
(3)若函数
是区间
上的单峰函数,证明:对于任意的
,若
,则
为含峰区间;若
,则
为含峰区间;试问当
满足何种条件时,所确定的含峰区间的长度不大于0.6.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,给出以下四个命题,其中真命题的序号是_______.
①
时,
单调递减且没有最值;
②方程
一定有解;
③如果方程
有解,则解的个数一定是偶数;
④
是偶函数且有最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
有时可用函数
![]()
描述学习某学科知识的掌握程度,其中x表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数a与学科知识有关.
(1) 证明:当
时,掌握程度的增加量
总是下降;
(2) 根据经验,学科甲、乙、丙对应的a的取值区间分别为
,
,
.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为
.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为
,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金
(元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com