精英家教网 > 高中数学 > 题目详情

【题目】秉承提升学生核心素养的理念,学校开设以提升学生跨文化素养为核心的多元文化融合课程.选某艺术课程的学生唱歌、跳舞至少会一项,已知会唱歌的有人,会跳舞的有人,现从中选人,设为选出的人中既会唱歌又会跳舞的人数,且

(1)求选该艺术课程的学生人数;

(2)写出的概率分布列并计算.

【答案】(1) 人(2) 分布列见解析,

【解析】

1)可设既会唱歌又会跳舞的有人,表示出艺术课的总人数和只会一项的人数,先求对立事件的概率,既会唱歌又会跳舞的对立事件为:只会唱歌或跳舞中的一项,再根据古典概型公式即可求解;

(2)根据题意求出每一符合条件的概率事件对应的概率值,列出分布列,求值即可;

(1) 设既会唱歌又会跳舞的有人,则该艺术课程的总人数共有人,那么只会一项的人数是.

因为

所以,即,解得.

故选该艺术课程的共有.

(2) 因为

所以的概率分布列为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,且.

1)讨论的单调性;

2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,为正三角形,且.

(1)证明:直线平面

(2)若四棱锥的体积为是线段的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:

针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( )

A. 获得A等级的人数减少了B. 获得B等级的人数增加了1.5倍

C. 获得D等级的人数减少了一半D. 获得E等级的人数相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为a,∠D60°,点HDC边中点,现以线段AH为折痕将DAH折起使得点D到达点P的位置且平面PHA⊥平面ABCH,点EF分别为ABAP的中点.

1)求证:平面PBC∥平面EFH

2)若三棱锥PEFH的体积等于,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为的欧拉三角形.如图,的欧拉三角形(H的垂心).已知,若在内部随机选取一点,则此点取自阴影部分的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为2,以椭圆的长轴为直径的圆与直线相切.

1)求椭圆的标准方程;

2)斜率为的直线交椭圆两点,且,若直线上存在点,使得是以为顶角的等腰直角三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图判断闰年的流程图,判断公元1900年、公元2000年、公元2018年、公元2020年这四年中闰年的个数为(nMODmn除以m的余数)(

A.1B.2

C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长都是2分别是的中点.

1)求证:平面

2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案