精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,则f(2)=
15
4
15
4
分析:根据题意,将x=2、x=-2分别代入f(x)+g(x)=ax-a-x+2可得,f(2)+g(2)=a2-a-2+2,①和f(-2)+g(-2)=a-2-a2+2,②,结合题意中函数奇偶性可得f(-2)+g(-2)=-f(2)+g(2),与②联立可得-f(2)+g(2)=a-2-a2+2,③,联立①③可得,g(2)、f(2)的值,结合题意,可得a的值,将a的值代入f(2)=a2-a-2中,计算可得答案.
解答:解:根据题意,由f(x)+g(x)=ax-a-x+2,
则f(2)+g(2)=a2-a-2+2,①,f(-2)+g(-2)=a-2-a2+2,②
又由f(x)为奇函数而g(x)为偶函数,有f(-2)=-f(2),g(-2)=g(2),
则f(-2)+g(-2)=-f(2)+g(2),
即有-f(2)+g(2)=a-2-a2+2,③
联立①③可得,g(2)=2,f(2)=a2-a-2
又由g(2)=a,则a=2,
f(2)=22-2-2=4-
1
4
=
15
4

故答案为
15
4
点评:本题考查函数奇偶性的应用,关键是利用函数奇偶性构造关于f(2)、g(2)的方程组,求出a的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案