【题目】如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,∠PAD=90°,CD∥AB,∠BAD=90°,且AB=3CD=3PA
AD=3.
![]()
(1)求证:BD⊥PC;
(2)求点A到平面PCD的距离.
【答案】(1)证明见解析;(2)
.
【解析】
(1)连接AC,交BD于E,推导出AC⊥BD,PA⊥AD,从而PA⊥平面ABCD,PA⊥BD,进而BD⊥平面PAC,由此能证明BD⊥PC.
(2)由VA﹣PCD=VP﹣ACD,能求出点A到平面PCD的距离.
(1)证明:连接AC,交BD于E,
由已知,在Rt△DAB中,∠DBA=30°,在Rt△ADC中,∠DAC=30°,
∴∠CAB=60°,∴∠AEB=90°,∴AC⊥BD,
∵平面PAD⊥平面ABCD,平面
平面
,PA⊥AD,
平面
,∴PA⊥平面ABCD,
平面
,∴PA⊥BD,
∵AC∩PA=A,∴BD⊥平面PAC,
平面
,∴BD⊥PC;
![]()
(2)解:设点
到面
的距离为
,点
到面
的距离为
,
∵VA﹣PCD=VP﹣ACD,∴
,
∵PA⊥平面ACD,∴hP=PA=1,
∴
,
解得点A到平面PCD的距离hA
.
科目:高中数学 来源: 题型:
【题目】《算法统宗》全称《新编直指算法统宗》,是屮国古代数学名著,程大位著.书中有如下问题:“今有五人均银四十两,甲得十两四钱,戊得五两六钱.问:次第均之,乙丙丁各该若干?”意思是:有5人分40两银子,甲分10两4钱,戊分5两6钱,且相邻两项差相等,则乙丙丁各分几两几钱?(注:1两等于10钱)( )
A.乙分8两,丙分8两,丁分8两B.乙分8两2钱,丙分8两,丁分7两8钱
C.乙分9两2钱,丙分8两,丁分6两8钱D.乙分9两,丙分8两,丁分7两
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个无穷数列
分别满足
,
,
其中
,设数列
的前
项和分别为
,
(1)若数列
都为递增数列,求数列
的通项公式;
(2)若数列
满足:存在唯一的正整数
(
),使得
,称数列
为“
坠点数列”
①若数列
为“5坠点数列”,求
;
②若数列
为“
坠点数列”,数列
为“
坠点数列”,是否存在正整数
,使得
,若存在,求
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,若椭圆的左、右焦点分别为
,
,椭圆上一动点
和
,
组成
的面积最大为
.
(1)求椭圆的方程;
(2)若存在直线
:
和椭圆相交于不同的两点
,
,且原点
与
,
连线的斜率之和满足:
.求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥
,侧棱
,底面三角形
为正三角形,边长为
,顶点
在平面
上的射影为
,有
,且
.
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)线段
上是否存在点
使得
⊥平面
,如果存在,求
的值;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥
的底面为正方形,且该四棱锥的每条棱长均为
,设BC,CD的中点分别为E,F,点G在线段PA上,如图.
![]()
(1)证明:
;
(2)当
平面PEF时,求直线GC和平面PEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象过点
和点
.
(1)求函数
的最大值与最小值;
(2)将函数
的图象向左平移
个单位后,得到函数
的图象;已知点
,若函数
的图象上存在点
,使得
,求函数
图象的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
是坐标轴上两点,动点
满足直线
与
的斜率之积为
(其中
为常数,且
).记
的轨迹为曲线
.
(1)求
的方程,并说明
是什么曲线;
(2)过点
斜率为
的直线与曲线
交于点
,点
在曲线
上,且
,若
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com