精英家教网 > 高中数学 > 题目详情

不等式a>105lga(a>0,a≠1)的解集是________.

答案:
解析:

  答案:当0<a<1时,-3<x<5;当a>1时,x<-3或x>5

  解析:105lga=a5,当0<a<1时,x2-2x-10<5,∴-3<x<5;当a>1时,x2-2x-10>5,∴x<-3或x>5


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式a≤
3
4
x2
-3x+4≤b的解集恰好是[a,b],则a+b的值为(  )
A、5
B、4
C、
8
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是直线l上不同的三点,O是l外一点,向量
OA
OB
OC
 满足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围;
(3)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f′(x)-3x]>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是首项为4,公差为1的等差数列,Sn为数列{bn}的前n项和,且Sn=n2+2n.
(1)求数列{an}及{bn}的通项公式an和bn
(2)f(n)=
n+3,n为正奇数
2n+1,n为正偶数
问是否存在k∈N*使f(k+27)=4f(k)成立.若存在,求出k的值;若不存在,说明理由;
(3)对任意的正整数n,不等式
a
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
1
n-1+an+1
≤0
恒成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈{0,1,2},且a,b满足不等式a-10b+13>0,若ξ=a+b,则Eξ=
3
2
3
2

查看答案和解析>>

同步练习册答案